
CORRELATION AND CONVOLUTION OF IMAGE DATA USING FERMAT NUMBER
TRANSFORM BASED ON TWO’S COMPLEMENT

Lars Rockstroh, Michael Klaiber, Sven Simon

University of Stuttgart, Institute of Parallel and Distributed Systems, Germany

ABSTRACT

The fast fermat number transform (FNT) enables fast correlation and
fast convolution similar to fast correlation based on fast fourier trans-
form (FFT). In contrast to fixed-point FFT with dynamic scaling,
FNT is based on integer operations, which are free of rounding error,
and maintains full dynamic range for convolution and correlation.
In this paper, a technique to calculate FNT based on two’s comple-
ment (TFNT) is presented and the correctness of the technique is
proven. The TFNT is data flow driven without conditional assign-
ments, which enables high performance pipelined implementations
on digital signal processors and field programmable gate arrays. By
taking the example of 2D correlation and based on a Radix-4 algo-
rithm, it is shown that TFNT requires less operations than fixed-point
FFT as well as less operations than FNT based on the previously pre-
sented diminished-1 approach.

Index Terms— fermat number transform, two’s complement

1. NOMENCLATURE

Na: set of natural numbers that are representable with a+ 1 bits.

Ta: set of two’s complements that are representable with a+1 bits.

xz: zth bit of x, where x εNa and xz εN0 or x εTa and xz εN0,

z εN with a ≥ z ≥ 0.

xz1,z2: z1th bit down to the z2th bit of x, where
x εNa and xz1,z2 εNz1−z2 or x εTa and xz1,z2 εNz1−z2,

z1, z2 εN with a ≥ z1 ≥ z2 ≥ 0.

2. INTRODUCTION

Floating point units require significant amounts of hardware re-
sources and as a consequence, many technologies such as many dig-
ital signal processors and field programmable gate arrays (FPGA)
provide arithmetic units for integer and fixed point processing only.
Calculating FFTs on these fixed point architectures requires scaling
the interim results to avoid overflows, which worsens the dynamic
range of the correlation results.

Fermat number transform (FNT) satisfies the cross-correlation
and the convolution theorem which enables fast correlation and fast
convolution based on FNT similar to fast correlation based on the
fast fourier transform (FFT). In contrast to the FFT, fast FNT is based
on modular arithmetic, which enables efficient execution on integer
architectures without any loss in accuracy or dynamic range.

Table 1 shows the word length for fixed point FFT and fast FNT
that is required to maintain full dynamic range for two scenarios.
The numbers shown are based on the analysis of the data flow only

and do not include the loss of dynamic range due to roundoff noise
that is inherent to fixed-point FFTs.

The first scenario is the correlation of binary image data, which
is required in various imaging measurement techniques such as pre-
sented in [1]. The second scenario represents the correlation of a
16x16 window, which is a typical interrogation window size in par-
ticle image velocimetry calculations [2]. Table 1 shows that the FNT
achieves full dynamic range with 17 bits while the FFT requires up
to 33 bits to guarantee full dynamic range. Dynamic scaling during
fixed-point FFT may reduce the required word length for some input
data but does not relax the requirements for input data with many
elements of high value.

Table 1. Dynamic range of 2D correlation based on FFT and FNT.

Dynamic range of input data 0...21 0...24

Dimension of data block 256x256 16x16

FFT: 1D (row-by-row) 0..28 0..28

FFT: 1D (column-by-column) 0..216 0..212

FFT: element-by-element mult. 0..232, 33 bit 0..224, 25 bit

FNT: 1D (row-by-row) 0..28 0..28

FNT: 1D (column-by column) 0..28 0..28

FNT: element-by-element mult. 0..216, 17 bit 0..216, 17 bit

Modular arithmetic that FNT is based on, requires executing
modulo operations on a regular basis in order to maintain the val-
ues of interim results in a range that can be represented by the ar-
chitectures word length. However, for FNT, where the modulus is
chosen of the form m = 2n + 1 or m = 22

n

+ 1, the modulo
operation can be implemented with some additional operations such
as demonstrated by the diminished-1 approach [3]. In this paper
an approach to calculate FNT based on two’s complement (TFNT)
is presented which requires less arithmetic and logical operations
than diminished-1. Since TFNT can replace diminished-1, all FNT
datagraphs that are representable in diminished-1, can be adapted to
TFNT, including the utilization of the chinese remainder theorem.

An optimization for FNT that was often discussed, is choosing
the primitive root of unity in the form ωN,m = 2x so that all mul-
tiplications with all roots of unity can be replaced by simple shifts.
However, there are no more than 2 · log2 m unique numbers inside
the quotient ring m = 2n+1 that are representable as a power of two
(m positives and m negatives). As a consequence, this optimization
drastically limits the transform length to 2 · log2 m due to the fact
that the amount of unique roots of unity must match the transform
length. In order to avoid this limitation, general multiplications with
arbitrary roots of unity are considered here.

The remainder of this paper is organized as follows: Section
3 introduces TFNT by taking the example of 2D correlation. In
Section 4, the operations used in Section 3 are explained and their
functionality is proven. Section 5 provides performance analysis of

1637978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

TFNT, FNT based on diminished-1 as well as FFT and the analysis
results are compared. Finally, Section 6 concludes this paper.

3. FNT AND CORRELATION BASED ON TWO’S
COMPLEMENT

In this section FNT based on the two’s complement operations
(TFNT) is presented (Subsection 1). Then, the TFNT is used to
design a fast correlation including inverse transform (Subsection 2).
Without loss of generality modulus is chosen of the form m = 2n+1
and the transform length is I .

3.1. FNT based on Two’s Complement (TFNT)

The datapath of FFT and FNT consists of multiplications and ad-
ditions. Regarding FNT, which is calculated in modular arithmetic,
supplementary modulo functionality is required to limit the value
range of interim results. By using two’s complement for FNT, this
modulo operation is equivalent to one single subtraction and dur-
ing transform, this subtraction is required only once before and after
each multiplication. In particular, the results of a multiplication with
a root of unity are of the set T2n. Next, a modulo operation is ex-
ecuted and the set is reduced to Tn+1. Then, up to 2n−1 of those
modulo results may be accumulated before the range of the result
of the accumulation reaches T2n, which are sufficient additions to
implement radix-128 architectures with n = 8 or even larger radix
butterflies with bigger n. After accumulation, another modulo op-
eration is executed so that the range of the accumulation results is
again in Tn+1 and the next multiplication with a root of unity fol-
lows.

TFNT consists of the following operations:

1. Converting of the roots of unity and of the input data into
two’s complement representation: The conversion of input
data takes place without computational cost. Afterwards, in-
put data is represented as a(i) εTn+1 ∀ i = 0, . . . , I−1 and
the roots of unity are represented as ω(i) εTn with −2n−1 �
ω(i) � 2n−1∀ i = 0, . . . , I − 1.

2. Additions inside butterfly operators z = r + t with r εTs3,
r εTs1 and t εTs2, where s1, s2, s3, εN and s3 = s1+s2+
1.: Overflow and underflow are prevented by choosing the
word length of the adder accordingly. The operation requires
an adder with an accuracy of s3 + 1 bits.

3. Multiplications with roots of unity inside butterfly operators
z = r · t, where z εT2n, t εTn with −2n−1 � t � 2n−1 and
r εTn+1 with −2n+1 ≤ r ≤ 2n+1−1: This multiplication
requires a two’s complement multiplier with an accuracy of
2n+ 1 bits.

4. Modulo operation kmod 2n+1 = l, where k εT2n, l εTn+1,
−2n+1 ≤ l ≤ 2n+1−1: The modulo operation requires one
two’s complement subtracter with n bits accuracy. In order to
restrict the range of interim results, the modulo operation is
executed once after each multiplication and once after each
addition that follows a multiplication.

Except from converting the results at the end of an inverse trans-
form from two’s complement back into binary representation, the
technique consists solely of two’s complement operators without any
conditional executions. As a consequence, the processing of all but-
terfly operations of the transform and its inverse are solely based
on multiplications, additions and subtractions in two’s complement.

This enables implementing pipelined designs based on dedicated in-
teger multipliers and adders on graphics card processing units, FP-
GAs or application specific integrated circuit (ASIC) designs.

3.2. Correlation based on Two’s Complement FNT

Based on the TFNT presented in the previous subsection, this sub-
section deals with the processing steps of a correlation:

1. TFNT transform of both signals that are to be correlated: Two
TFNTs are processed.

2. Element-by-element multiplication of the TFNT results z =
r ·t, where z εT2n+2,t εTn+1 with −2n+1 ≤ t ≤ 2n+1−1
and r εTn+1 with −2n+1 ≤ r ≤ 2n+1−1: This multiplica-
tion requires a two’s complement multiplier with an accuracy
of 2n+ 2 bits.

3. Modulo operation kmod 2n + 1 ≡ l, where k εT2n+2 and
l εTn+1: The operation is partitioned into the following two
modulo operations:

(a) Modulo operation kmod 2n+1 ≡ l1, where k εT2n+2

and l1 εTn+3. The modulo operation requires one
two’s complement subtracter with n+ 3 bits accuracy.

(b) Modulo operation l1mod 2n+1 ≡ l2, where l1 εTn+3

and l2 εTn+1. The modulo operation requires one
two’s complement subtracter with n+ 1 bits accuracy.

4. Inverse TFNT: The normalization of the results, which is
achieved by multiplying with the inverse of the transform
length 1/I is hidden by scaling the roots of unity used for
inverse transform.

5. Converting the results of the inverse TFNT from two’s com-
plement into natural numbers that cover the range of the input
data of the correlation: b = c with 0 ≤ b ≤ 2n, b εNn and
−2n +1 ≤ c ≤ 2n+1 − 1, c εNn+1. This operation converts
data in two’s complement representation back to binary rep-
resentation that has the value range of the input data. The op-
eration requires one adder and two conditional assignments.
However, the conditions are purely based on the sign bit (Al-
gorithm 1) and thus, condition checking does not require a
subtraction or addition. The operation requires one adder.

Input: c , where −2n + 1 ≤ c ≤ 2n+1 − 1 with c εTn+1

Output: b, where b ≡ c and 0 ≤ b ≤ 2n with b εNn

begin1
if c < 0 then temp = m; else temp = −m2
resinterim = c+m3
if resinterim < 0 then resfinal = c4
else resfinal = resinterim5
return resfinal6

end7

Algorithm 1: Conversion of two’s complement into binary
representation.

4. FNT OPERATIONS IN TWO’S COMPLEMENT

This section discusses the TFNT operations that were introduced in
the previous section. The modulus is chosen of the form m = 2n+1
and the transform length is I . In the following subsections, these
operations are described and their functionality is proven.

1638

4.1. Converting of Input Data and Roots of Unity into Two’s
Complement

The conversion of input data into two’s complement consists of
adding a leading zero which does not require computational ef-
fort. Regarding the roots of unity, all values bigger than 2n−1 are
subtracted by m in order to save one bit for representation and dur-
ing calculations. The formal description of both conversions is as
follows:

1. Representation of all input data in two’s complement: xi =
yi ∀ i = 0, . . . , I − 1, where

• y(i) are the initial input data with 0 � y(i) � 2n and
y(i) εNn ∀ i = 0, . . . , I − 1.

• x(i) are the input data in two’s complement with 0 �
x(i) � 2n and x(i) εTn+1∀ i = 0, . . . , I − 1.

2. Conversion of roots of unity into two’s complement: The con-
version is only required once and can be prepared in advance:

ω(i)=

{
w(i) w(i) � 2n−1

w(i)−m else
∀ i = 0, . . . , I−1, where

• wi are the roots of unity represented in binary repre-
sentation with 0 � w(i) � 2n and w(i) εNn ∀ i =
0, . . . , I − 1.

• ωi are the roots of unity converted into two’s comple-
ment with −2n−1 � ω(i) � 2n−1 and ω(i) εTn ∀ i =
0, . . . , I − 1.

4.2. Modulo operation

The modulo operation is based on the following approach: kmod 2n+
1 ≡ l with k εT2n+q , l εTn+q and q εN. In order to implement this
operation, the parameter q is chosen as follows:

1. For TFNT and inverse TFNT: kmod 2n+1 ≡ l with k εT2n,
l εTn+1, −2n + 1 ≤ l ≤ 2n+1 − 1 ⇒ q = 0.

2. For correlation, Section 3.2, 3.(a): kmod 2n + 1 ≡ l1 with
k εT2n+2, l1 εTn+3 ⇒ q = 2.

3. For correlation, Section 3.2, 3.(b): l1mod 2n + 1 ≡ l2, with
l1 εTn+3, l2 εTn+1 ⇒ q = 0. In addition, the sign bit of l1
is duplicated so that l1 εT2n.

Next, the implementation of the modulo operation is presented and
based on this implementation, the correctness of the method and the
range of l is proven.

1. Implementation:

Set x = kn−1,0 with x εNn−1

and yn+q,0 = k2n+q,n with y εTn+q .

Then l = x− y.

2. Proof of correctness:

From x = kn−1,0 and yn+q,0 = k2n+q,n follows

k ≡ −22n+q · k2n+q + k2n+q−1,n + kn−1,0 ≡
− 22n+q · yn+q + 2n · yn−1+q,0 + x ≡
2n · (−2n+q · yn+q + yn−1+q,0) + x ≡
2n · y + x

2n · y + x /− y · (2n + 1) ≡ x− y.

3. Proof that the range of l is: −2n+q+1 ≤ l ≤ 2n+q+2n−1:

Set x εNn−1, y εTn+1+q .

Investigation for minima and maxima:

If x = 0 and y = 2n+q − 1 then l = −2n+q + 1.

If x = 2n − 1 and y = 2n+q − 1 then
l = −2n+q + 2n ≥ −2n+q + 1.

If x = 0 and y = −2n+q then l = 2n+q .

If x = 2n − 1 and y = −2n+q then l = 2n+q + 2n − 1.

4.3. Two’s complement multiplication z = r · t
This subsection proves the value range of the results of the two’s
complement multiplications that were introduced in the previous
section. Here, the first type of multiplication is used for TFNT
transform and inverse TFNT transform. The second type is required
to implement the element-by-element multiplication of TFNT-based
correlations and convolutions.

1. Type 1 (FNT): z εT2n, t εTn with −2n−1 � t � 2n−1 and
r εTn+1 with −2n + 1 ≤ r ≤ 2n+1 − 1

Investigation of multiplication with minima and maxima:

If t = −2n−1 and r = −2n + 1 then
z = 22n−1 − 2n−1 < 22n − 1.

If t = −2n−1, r = 2n+1 − 1 then
z = −22n + 2n−1 > −22n.

If t = 2n−1, r = −2n + 1 then
z = −22n−1 + 2n−1 > −22n.

If t = 2n−1, r = 2n+1 − 1 then
z = 22n − 2n−1 < 22n − 1.

From −22n < z < 22n − 1 follows z εT2n.

2. Type 2 (correlation): z εT2n+2, t εTn+1 with
−2n + 1 ≤ t ≤ 2n+1 − 1
and r εTn+1 with −2n + 1 ≤ r ≤ 2n+1 − 1

Investigation of multiplication with minima and maxima:

If t = −2n + 1 and r = −2n + 1 then
z = 22n − 2n+1 + 1 < 22n+1 − 1.

If t = −2n + 1 and r = 2n+1 − 1 then
z = −22n+1 + 2n+1 + 2n − 1 > −22n+1.

If t = 2n+1 − 1 and r = −2n + 1 then
z = −22n+1 + 2n+1 + 2n − 1 > −22n+1.

If t = 2n+1 − 1 and r = 2n+1 − 1 then
z = 22n+2 − 2n+2 + 1 < 22n+2 − 1.

From −22n+1 < z < 22n+2 − 1 follows z εT2n+2.

4.4. Addition and Conversion into Binary Representation

The accumulations inside TFNT butterflies are typical two’s com-
plement additions. Overflow and underflow must be prevented to
guarantee accurate results. This is achieved by choosing the word
length of an adder with respect to the maximum range of the input
values so that overflow and underflow do not occur. The conversion
from two’s complement into binary representation, which is applied
after inverse TFNT, was discussed in Section 3.2.

1639

5. PERFORMANCE ANALYSIS

The performance of TFNT is analyzed by comparing its operation
count with those of fixed-point FFT and the diminished-1 approach
by taking the example of 2D correlation with 17 bit word length.
The operation count |Ops| consists of additions and multiplications,
where an addition counts as one |Opsadd = 1|. The effort of a
multiplication is approximated by an equivalence of 17 additions
|Opsmult = 17| due to the word length of 17 bit.

The 2D correlation is based on a single-butterfly radix-4 algo-
rithm used in various FFT core generators for industrial and research
applications [4]. Such a butterfly is shown in Fig. 1. In order to im-
plement FNT instead of FFT on this architecture, only the operations
inside the radix-4 butterfly are replaced while the rest of the architec-
ture including memory structure remains the same. This is an advan-
tage of FNT in comparison to Winograd transform, which requires a
specific order of processing and is more irregular than radix4 [5].

Fig. 1. Radix-4 butterfly.

A 2D correlation with N elements per dimension that is based
on a radix-4 algorithm, requires in general the following operations:
|Opscorr| = 3 · 2 ·N · |OpsR4−1D|+ |Opse−by−e|,
where |OpsR4−1D| is the number of operations required for 1D
radix-4 algorithm and |Opse−by−e| is the operation count for
element-by-element multiplication. Three transforms are processed,
two for each signal and one inverse transform after element-by-
element multiplication.

The number of operations for a 1D radix-4 algorithm with trans-
form length N is defined as
|OpsR4−1D| = N/4 · log4(N) butterflies · |ops|/butterfly,
where the number of operations per butterfly |ops|/butterfly de-
pends on the selected transform [6].

For the FFT, a butterfly consists of 8 complex additions (16 real
adds) and 3 complex multiplications (3 real adds and 3 real mults
[7]). From this it follows that |Ops|/butterfly =
8 · 2 + 3 · (3 + 3 · 17) = 178, |OpsFFT 1D| = 178 ·N · log4(N)
and |Opse−by−e| = N2 · (3 + 3 · 17) = 54 · N2. Due to the fact,
that complex FFT can process two real-value FFTs in parallel, the
operation count is divided by two and thus, the operation count is:
|Opscorr FFT | = 133.5 ·N2 · log4(N) + 27 ·N2.

Concerning the diminished-1, the analysis is based on the
method discussed in [3]. Here, each diminished-1 multiplication
is executed in binary representation while additions are executed
in diminished-1 representation. As a consequence, a conversion
between multiplication and addition as well as between addition and
multiplication is required and this conversion consists of one addi-
tion. This conversion is required 8 times: 4 times before additions
and 4 times after the additions. Also, each addition and multiplica-
tion is followed by an subsequent addition, and thus, the operation
count per butterfly is: |Ops|/butterfly = 3·17+3+8+8·2 = 78.
Element-by-element multiplication consists of the following opera-
tions: |Opse−by−e| = 18 ·N2. Thus, the total operation count is:
|Opscorr Dim| = 117 ·N2 · log4(N) + 18 ·N2.

Regarding the TFNT, each multiplication of the butterfly re-
quires an subsequent subtraction. Thus, the three multiplications

inside the radix4-butterfly require 3 · 17 + 3 = 54 operations. The
−j multiplication can be replaced by an constant shift but requires
an subsequent modulo operation (one subtraction). All additions re-
quire one operation and each of the four final results of the butterfly
requires an subsequent modulo operation. Thus, the operation count
is: |ops|/butterfly = 54 + 1 + 8 + 4 = 67 and
|OpsFNT 1D| = 67 ·N · log4(N). Regarding element-by-element
multiplication, TFNT requires two subsequent modulo operations
(see Section 3.2). From this it follows that the operation count is
|Opse−by−e| = N2 · (2 + 1 · 17) = 19 ·N2.

In contrast to FFT and diminished-1, TFNT requires additional
post-processing as shown in Algorithm 1 in order to back transform
the range of results into the range of the input values. The algo-
rithm consists of two comparisons and one addition. However, the
comparisons are checked by investigating the MSB (Section 3.2).
Thus, the operation count for post processing is approximated by
|Opspost| = 1 ·N2. Then, the total count of operation is:
|Opscorr TFNT | = 100.5 ·N2 · log4(N) + 20 ·N2.
Based on the analysis of this section, the coefficients of the higher or-
der terms N2 · log4(N) of the operation counts are compared. Here,
the operation count for TFNT shows an improvement of 24.7 Percent
against FFT and 14.1 percent against the diminished-1 approach.

6. CONCLUSION

In this paper, fermat number transform based on two’s complement
(TFNT) was introduced. In contrast to fixed-point FFT with dy-
namic scaling, the TFNT enables convolutions and correlations free
of rounding error and with full dynamic range independent from the
input data. The technique can be used to utilize dedicated integer
units on field programmable gate arrays as well as digital signal pro-
cessors or integer hard macros during ASIC design. The function-
ality of the technique was proven and demonstrated by taking the
example of fast 2D correlation with 17 bit word length. Based on
this example, the performance of TFNT was evaluated and compared
to FNT based on diminished-1 and to fast fourier transform (FFT).
The comparison shows that TFNT requires 24.7 percent less opera-
tions than FFT and 14.1 percent less operations than FNT based on
diminished-1.

7. REFERENCES

[1] L. Rockstroh, T. Lefeure, M. Wroblewski, S. Wahl, N. Fortier,
and S. Simon, “Simultaneous characterization of particle veloc-
ities and sizes based on autocorrelation of filtered motion blur-
ring,” in Liquid Atomization and Spray Systems Europe, 2011.

[2] C. Gray, “High-speed piv using high-frequency diode-pumped
solid state laser and multi-frame ccd,” in Instrumentation in
Aerospace Simulation Facilities, ICIASF, Cleveland, 2001.

[3] M. Benaissa, A. Bouridane, S.S. Dlay, and A.G.J. Holt,
“Diminished-1 multiplier for a fast convolver and correlator us-
ing the fermat number transform,” in IEE Proceedings G Elec-
tronic Circuits and Systems, 1988, vol. 135(5), pp. 187–193.

[4] Inc. Xilinx, LogiCore IP Fast Fourier Transform v7.1, 2011.

[5] S. Winograd, “On computing the discrete fourier transform,” in
Math. Computation, 1978, vol. 32(141), pp. 175–199.

[6] C.S. Burrus, “Unscrambling for fast dft algorithms,” in IEEE
Trans. on Acoustics, Speech, and Signal Processing, 1988.

[7] S.G. Krantz, Handbook of Complex Variables, Birkhaeuser
Boston, 1999.

1640

