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ABSTRACT

A fast recursive algorithm for pruned bit-reversal permutations is
proposed. The algorithm is based on a computationally efficient
scheme for evaluating a novel permutation statistic called permuta-
tion inliers that counts inlier addresses under pruning. This statistic
is computed by evaluating a recursion using integer shift and add op-
erations in logarithmic time complexity. Moreover, a parallel pruned
interleaving algorithm based on computing multiple inliers in par-
allel is proposed. The advantages of the proposed algorithm are
reduced latency and reduced memory requirements, which are de-
scribe in many signal processing and communication applications.

Index Terms— Bit-reversal permutations, pruned interleavers.

1. INTRODUCTION

In certain signal processing applications, it is often required to shuf-
fle streaming data [1] into a particular order such as in signal trans-
form (e.g., Cooley-Tukey fast Fourier [2, 3], discrete cosine [4],
Hartley transforms [5]), matrix transposition [6, 7], and matrix de-
composition algorithms [8]. These shufflings are based on a permu-
tation which is typically data-independent. Examples include bit-
reversal, Gray code, linear congruential, and sorting permutations.
Such permuters are implemented using double-buffers or in some
cases single buffers if the permutation satisfies certain properties, in
particular, low permutation order. [1].

However, in many other communications applications, it is
sometimes impossible to permute the streaming data before the
whole stream is received even if its permutation order is low, due
to the fact that the permutation is “address-dependent”. Address
generation in this case is the bottleneck. This necessitates double
or multiple buffers in order to maintain a desired system processing
throughput, which increases the memory requirements. An example
of address-dependent permuters are pruned interleavers. Inter-
leavers are used as an adjunct to coding for error correction [9, 10].
They are a subclass of permuters with carefully chosen permutations
to break certain patterns in the input sequence, and strategically
reposition symbols according to their relevance in protecting the
overall sequence against errors. Examples include interleavers in
turbo codes [11], channel interleavers in bit-interleaved coded mod-
ulation schemes [12], and carrier interleaving for diversity gain in
multi-carrier wireless systems with frequency-selective fading and
multiple-access interference [13].

A class of computationally efficient interleavers with simple ad-
dress generation are block interleavers [14] of power-of-2 length
k = 2n. They are expressed in closed-form expression by ρ : Zk →
Zk, ρ(j) = k1 · π1(j mod k1) + π2

(⌊
j
k1

⌋)
, where π1 : Zk1 →

Zk1 and π2 : Zk2 → Zk2 are basic permutations of lengths k1 =
2n1 and k2 = 2n2 , respectively, and k = k1k2. Here the k sym-
bols are written row-wise into a k2×k1 array and read column-wise
after permuting the rows by π1 and the columns by π2. Example
permutations proposed in the literature or adopted in modern com-
munications standards [15, 16, 17] include the bit-reversal permuta-
tion (BRP) π(j) = BRP(j(2)) [16] which reverses the order of bits
in j(2), and polynomial-based permutations π(j) = fm(j) mod k
where fm(j) is a degree-m permutation polynomial [18].

Block interleavers are often required to support several codes
with various codeword lengths (not just powers of 2) depending on
the input data rate requirements (e.g. recent communication stan-
dards [15, 16, 17]). To accommodate for flexible block lengths β,
interleaving is done using a mother interleaver of length k = 2n,
where n is the smallest integer such that β ≤ k, such that outlier
interleaved addresses greater than β − 1 are pruned away. However,
this pruning operation makes the permutation address-dependent,
and creates a serial bottleneck since interleaved addresses are now
a function of the permutation as well as the number of pruned ad-
dresses. To parallelize this operation, it is essential to characterize
the permutation structure with respect to the pruning operation in or-
der to interleave an address without interleaving all its predecessors.

In this paper, we propose a recursive algorithm to speed up
pruned interleavers based on bit-reversal permutations. The algo-
rithm is based on an efficient scheme for deriving the so-called
“inliers permutation statistic” which counts pruned inliers without
traversing all predecessors. This algorithm has logarithmic time-
complexity compared to linear complexity for a serially pruned
bit-reversal interleaver (PBRI). Moreover, we use this algorithm to
parallelize a serial PBRI and reduce latency by a desired parallelism
factor. Another important advantage of the proposed algorithm is
that it reduces memory buffering requirements and enables on-the-
fly interleaving without first storing all the data, then waiting to
derive all pruned addresses before shuffling the data. The inliers
statistic can be generalized to other permutations, which is the main
advantage over our earlier algorithm presented in [19].

2. A BASIC PRUNED PERMUTATION ALGORITHM

Consider the sequence of integers [k] � {0, 1, · · · , k − 1}, and let
π be a permutation on [k]. Let (jn−1 · · · j1j0)2 denote the binary
representation of an integer j ∈ [k], where k = 2n, n is the number
of bits, and ji ∈ {0, 1} for i = 0, · · · , n − 1. The bit-reversal of j

is defined as πn(j) � (j0j1 · · · jn−1)2 =
∑n−1

i=0 ji2
n−i.

A bit-reversal interleaver (BRI) maps an n-bit number α into
another n-bit number y such that y = πn(α). The values taken
by α and y range from 0 to k − 1, where k = 2n is the size of
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the interleaver. A pruned BRI (PBRI) maps an n-bit number α <
β ≤ k into another n-bit number y < β according to the bit-reversal
rule. The size of the pruned interleaver is β. Pruned interleavers are
used when blocks of arbitrary lengths (other than powers-of-2) are
needed. To interleave a block of size β, a mother interleaver whose
size is the smallest power-of-2 that is ≥ β is selected and pruned.
Hence, in the following, we assume that k/2 < β < k.

There are several ways to prune addresses from the mother in-
terleaver. One method is to ignore positions beyond β−1 in the per-
muted sequence, which we consider in this work (see also [20, 21]).
Other methods prune addresses beyond β − 1 in the original se-
quence, or prune a mixture of addresses from both the original and
pruned sequences [21]. Hence any address that maps to an address
≥ β is dropped and the next consecutive address is tried instead. To
determine where an arbitrary address α gets mapped, a serial PBRI
(S-PBRI) starts from w = 0 and maintains the number of invalid
mappings δ (called the pruning gap) that have been skipped along
the way. If w + δ maps to a valid address (i.e., πn(w + δ) < β),
then w is incremented by 1. If w + δ maps to a invalid address (i.e.,
πn(w + δ) ≥ β), δ is incremented by 1. These steps are repeated
until w reaches α and πn(α + δ) is a valid address. Therefore, in a
pruned bit-reversal interleaver, α �→ y = πn(α + δ). Algorithm 1
shows the pseudo-code.

Algorithm 1 Serial PBRI Algorithm: y = S-PBRI(k, w1, w2, β, δ)
w ← w1

while w ≤ w2 do
if πn(w + δ) < β then

y[w]← πn(w + δ)
w ← w + 1

else
δ ← δ + 1

end if
end while

3. PERMUTATION INLIERS STATISTIC

Permutation statistics have been used to study combinatorial proper-
ties of permutations. In [22], a new permutation statistic useful for
analyzing pruned interleavers called permutation inliers was intro-
duced. An integer i ∈ [k] is called an (α, β)-inlier of π if i < α
and π(i) < β. We denote by INLα,β(π) the set consisting of all
(α, β)-inliers of π,

INLα,β(π) � {j ∈ [k] | j < α, π(j) < β}, 0 < α, β ≤ k, (1)

and by #INLα,β(π) the number of (α, β)-inliers of π. We call deter-
mining INLα,β(π) for arbitrary π the permutation inliers problem.
Similarly, an integer i ∈ [k] is called an (α, β)-outlier if i < α and
π(i) ≥ β. OULα,β(π) denotes the set of all (α, β)-outliers, and
#OULα,β(π) their number:

OULα,β(π) = [α]− INLα,β(π), (2)

where ‘−’ is the set-difference operator. For example, the (5, 7)-
inliers of the permutation π = ( 0 1 2 3 4 5 6 7 8 9

3 1 7 2 5 8 6 4 0 9 ) are INL5,7(π) =
{0, 1, 3, 4}, while the outliers are OUL5,7(π) = {2}.

Surprisingly, determining INLα,β(π) for arbitrary permutations
has largely been unattempted before in the literature. In [23], a
solution for linear permutation polynomials based on Dedekind
sums [24, 25] was proposed. In [19] a combinatorial solution for
bit-reversal permutations based on bit manipulations was presented.

Here we present an alternative recursive solution to the problem for
bit-reversal permutations based on an efficient evaluation of

#INLα,β(π) =

k−1∑
j=0

⌊
j − α

k

⌋⌊
π(j)− β

k

⌋
, (3)

which counts the desired inliers. The solution is based on evaluating
sums analogous to the well-known Dedekind sums [24]. In [22], it
was shown that this solution takes the form

#INLα,β =
αβ

k
+

1

4k
T (k, α, β) +KINL(α, β), (4)

where T (k, α, β) is defined by the following recursion

T (k, α, β)=

{
2T (k/2, α, (β − 1)/2)−4α−Ko, β odd;
2T (k/2, α, β/2) +Ke, β even,

(5)

and 0 if either α = 0 or β = 0. The remaining quantities are given

by: Ko =k
(
2
⌊
β∗−α

k

⌋
−2⌊2α

k

⌋−δ(β∗−α
k

)
+δ

(
β∗
k

)
+δ

(
2α
k

))
; Ke =

k
(
2
⌊

β∗−α
k

+ 1
2

⌋
+2

⌊
α
k
+ 1

2

⌋−δ(β∗−α
k

+ 1
2

)
−δ(α

k
+ 1

2

))
; β∗ =

πn−1((β − 1)/2) if β is odd; β∗ = πn−1(β/2) if β is even; the
function δ(x) = 1 if x is an integer, and 0 otherwise; KINL(α, β)
is a constant that evaluates to either 0,±1/4, 1/2, 3/4 depending on
α, β (details are omitted due to lack of space).

Note that since k is a power of 2, only integer shift and add op-
erations are needed to compute (5) and (4), assuming the product
of the constants αβ is computed off-line. Eq. (4) evaluates recur-
sively in at most log2 k − 1 steps using (5), where the arguments of
T (k, α, β) are reduced until T reaches 0.

Example 1 Let n = 32, k = 2n = 232, α = 216 − 1, β =
216 + 1. Then αβ/k = (232 − 1)/232 and KINL evaluates to
3/4 in this case. Using (5), we have c∗ = π31(2

15) = 215 and
T (232, 216−1, 216+1) = 2T (231, 216−1, 215)+233−218−22.
Next we have T (231, 216 − 1, 215) = 2T (230, 216 − 1, 214). These
steps are repeated using (5), resulting in T (232, 216 − 1, 216 +
1) = 4294967300 = 233 + 22. Therefore, using (4) we have
#INL216−1,216+1 = 2.

4. A RECURSIVE PRUNED PERMUTATION ALGORITHM

The time complexity to determine δ using the S-PBRI algorithm
is O(k). We apply the permutation inliers problem to evalu-
ate the pruning gap δ more efficiently in order to speed up the
pruning process in bit-reversal interleavers. Using the inliers
problem formulation, δ is simply the minimum non-negative in-
teger to be added to α such that INLα+δ,β has exactly α inliers:
min δ ≥ 0 such that #INLα+δ,β = α.

Out of the first α addresses, there are #OULα,β outliers ≥ β.
Hence δ ≥ #OULα,β . Next consider the expanded interval of ad-
dresses α1 = α + #OULα,β . This set contains #OULα1,β out-
liers. Hence again δ ≥ #OULα1,β . This process is repeated by
expanding the interval into α2 = α + #OULα1,β and determining
the corresponding number of outliers. The process terminates when
#OULαt,β = #OULαt−1,β at some step t when there are no more
outliers, and hence δ = #OULαt,β . This process is illustrated in
Fig. 1). Algorithm 2 lists the pseudo-code.

Example 2 Let n = 32, k = 2n = 232, α = 212, β = 231 + 10.
Applying the MI algorithm, we have δ1 = #OUL212,231+10 = 2047
using (2), (4). Next we expand α to α + 2047 and recompute δ2 =
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Fig. 1. The smallest interval of addresses α + δ that has exactly α
inliers and δ outliers with respect to β when mapped by πn.

#OUL212+2047,231+10 = 3070. Similarly at step 3 we have δ3 =
#OUL212+3070,231+10 = 3582. The operations are repeated until
t = 12 with δ12 = #OUL212+4093,231+10 = 4093.

The gap δ in Algorithm 2 is initialized to zero for simplicity.
There are ways to initialize δ. For example, it can be shown [22]
that δ satisfies the following bound:

α(k/β − 1) +Wlk/β ≤ δ ≤ α(k/β − 1) +Wuk/β (6)

where Wl and Wu are constants. δ can be initialized with the lower
bound, or with the upper bound but the gap in Algorithm 2 must be
reduced instead of expanded every iteration.

Algorithm 2 Minimal Inliers (MI) Algorithm: δ = MI(k, α, β)

t← 0
δ0 ← 0
repeat

δt+1 ← #OULα+δt,β

t← t+ 1
until δt = δt−1

δ ← δt

The convergence rate of the MI algorithm is 1 − β/k as The-
orem 1 states. The proof is based on the bounds given in (6). The
details are omitted due to lack of space.

Theorem 1 (Rate of Convergence) The minimal inliers algorithm
converges at a rate μ = 1− β/k.

Using the MI algorithm a parallel PBRI of length β with a paral-
lelism factor of p over the S-PBRI can be designed using p (or p+1
if β mod p �= 0) S-PBRI’s as shown in Algorithm 3. The S-PBRI’s
are initialized with their respective δ’s using the MI algorithm.

Algorithm 3 Parallel PBRI Algorithm: y = P-PBRI(k, p, β)

for all i = 0→ p− 1 do
δi ← MI(k, i 	β/p
 , β)
y[i	β/p
 : (i + 1) 	β/p
 − 1] ← S-PBRI(k, i 	β/p
 , (i +

1) 	β/p
 − 1, β, δi)
end for
if β mod p > 0 then

δp ← MI(k, p 	β/p
 , β)
y[p	β/p
 : β − 1]← S-PBRI(k, p	β/p
 , β − 1, β, δp−1)

end if

5. SIMULATION RESULTS AND CONCLUSIONS

Figure 2 compares the interleaving time of the S-PBRI algorithm
and the proposed P-PBRI algorithm as a function of interleaver size,
for two values of p. As shown from the plots, the time to interleave
degrades significantly for the S-PBRI algorithm as k increases. The
P-PBRI algorithm attains a speed up improvement of slightly more
than p over the S-PBRI algorithm.

Figure 3 illustrates the lower and upper bounds of the pruning
gap δ. The plot demonstrates the tightness of the bounds given in (6).

Figure 4 shows the convergence rate of the MI algorithm. The
asymptotic bounds designate the lower and upper bounds of δ, while
the solid line shows the actual values of δ as the algorithm converges.
The rate of convergence depends on the ratio of β/k, which is the
ratio of the pruned interleaver size to the mother interleaver size.

The plots demonstrate the advantages of the proposed MI and
P-PBRI algorithms in speeding up the interleaving process when
pruning is employed. They eliminate the serial bottleneck of the
S-PBRI algorithm. The P-PBRI algorithm can be efficiently uti-
lized to design parallel pruned channel and turbo interleavers em-
ployed in modern communications standards such as [15, 16, 17],
and hence reduce interleaving latency on the transmitter side and de-
interleaving latency on the receiver side.

The proposed scheme to accelerate the interleaving speed of
pruned interleavers based on the minimum inliers statistic can be
generalized to other permutations structures beyond bit-reversal per-
mutations. An interesting permutation is the one currently employed
in LTE [15] which is based on quadratic permutation polynomials
(QPP) [18]. The recursive solution in (4) needs to be adapted to
QPP, which is currently work in progress.
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