
A RECONFIGURABLE GPU IMPLEMENTATION FOR TOMLINSON-HARASHIMA
PRECODING

Fernando Domene, Sandra Roger, Carla Ramiro, Gema Piñero, and Alberto Gonzalez

Institute of Telecommunications and Multimedia Applications, Universitat Politècnica de València
Camino de Vera s/n, 46022, Valencia, Spain, email: ferdool@iteam.upv.es

ABSTRACT
Fast parallel processing capability of general purpose Graphic

Processing Units (GPU) can be exploited to accelerate the

precoding calculation needed in spatially multiplexed wire-

less communication systems. In this paper, a GPU-based

implementation of the well-known multiuser Tomlinson-

Harashima precoding (THP) scheme combined with a lattice-

reduction (LR) stage is presented. The proposed approach

allows the LR stage to be switched off when user require-

ments are achieved by using only THP. Moreover, our GPU

implementation provides scalability in the number of sub-

carriers per symbol, which is a key factor in LTE and 4G

wireless standards. Simulation results show that the GPU-

based THP implementation performs up to 7 times faster than

its CPU-equivalent whereas the LR stage implementation

only achieves a speedup of 3. Despite the fact that the LR

cannot be as efficiently parallelized as the THP, a speedup of

nearly 6 is achieved when both are combined.

Index Terms— Multiuser precoding, Tomlinson-Harashima

Precoding, GPU.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless communi-

cations have been widely studied during the last decade [1].

MIMO systems provide high spectral efficiency by means of

spatially multiplexing as many data streams as transmitting

antennas are used in the Base Station (BS). Furthermore,

MIMO techniques can be used to enhance the performance of

Orthogonal Frequency Division Multiplexing (OFDM) sys-

tems by exploiting the spatial domain. MIMO-OFDM allows

to transmit different streams over the different subcarriers

and, through MIMO precoding, different spatial beams in

each one of the subcarriers.

Graphic Processing Units (GPU) have recently become

attractive for the efficient implementation of signal process-

ing algorithms for communication systems, such as the soft

MIMO detector in [2] or the decoding of LDPC codes [3]. In

this paper, we focus on the implementation of the Tomlinson-

Harashima precoding (THP) method [4] and its combination

Thanks to the TEC2009-13741 project and to the PROME-

TEO/2009/013 project for funding.

with a LLL [5] lattice-reduction stage, called LR-THP. These

non-linear techniques achieve a better performance than lin-

ear techniques, such as Zero Forcing, at the cost of a higher

computational cost. In [6], LR-THP was shown to improve

the performance of conventional THP at the expense of an

increased computational cost, mainly due to the LLL lattice-

reduction stage [5, 7]. To address the above issue, the pro-

posed implementation has been developed using a GPU, since

they provide a huge capability of parallel processing and rapid

prototyping.

A comparison among the proposed implementations of

the algorithms under study is carried out with the conven-

tional execution on a high performance CPU, showing that the

GPU highly speeds up the execution of the methods. GPUs

also allow for reconfigurability and this advantage has been

exploited to propose a reconfigurable THP scheme combin-

ing the use of LR. Moreover, since the GPU is more rarely

used than the CPU in conventional applications, its use as a

co-processor in signal processing systems is very promising.

2. SYSTEM MODEL

Consider a multiuser MIMO-OFDM wireless downlink from

a base station (BS) with N antennas to K ≤ N single-antenna

users. According to technical specifications in LTE Rel. 10

[8], only Nc out of MIFFT subcarriers are used for informa-

tion purposes, whereas subcarriers placed at both edges of the

total bandwidth are void in order to reduce the requirements

of analog filters. Under spatial multiplexing precoding, all

the users receive their information through the same set of Nc

subcarriers. Received symbols by the K users of the system

at the mth subcarrier can be grouped in vector y[m] ∈ CK×1:

y[m] = H[m]x[m] + n[m], (1)

where vector x[m] ∈ CN×1 includes the precoded informa-

tion symbols and n[m] ∈ CK×1 is the received noise for the

mth subcarrier. Matrix H[m] ∈ CK×N is the channel matrix

and its elements describe the signal fading from each trans-

mitter antenna to each user for the mth subcarrier. We as-

sume block-fading channels, constant on blocks of duration

Lch symbols, and changing according to some ergodic statis-

tics from block to block. For practical reasons, we are using

1629978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

an equivalent (2K × 2N)-dimensional real-valued represen-

tation of equation (1) as described in [7].

3. RECONFIGURABLE TOMLINSON-HARASHIMA
PRECODING

In this work we focus on the THP [4] scheme, which uses

a simple modulo operator to reduce the transmitted signal

power from what it would be if a linear precoding was per-

formed. The THP scheme can be divided into two stages: the

preprocessing stage (PPS) and the per-symbol-vector stage

(PSVS) [7]. The PPS calculates some matrices independent

of the symbol vector which are posteriorly used by the PSVS

stage. Thus, the PPS can be done off-line and its results be

reused whereas channel does not change. On the other hand,

the PSVS collects the calculations performed every time that

a new symbol vector is transmitted, which happens Lch times

for a given realization of a block-fading channel.

It was shown in [6] that the performance of the THP algo-

rithm can be substantially improved by previously reducing

the channel matrix with the LLL algorithm. The performance

comparison among both algorithms is shown in Fig.1. Since,

depending on the user requirements and channel condition,

the performance of the THP can be sufficient with much lower

cost than the LR-THP, we propose a reconfigurable scheme

that can switch between the conventional THP algorithm and

the LR-THP, as depicted in Fig. 2. As reported in [9], re-

configurable approaches are meaningful since they allow for

a flexible tradeoff between the energy efficiency and quality

of service. Note that, through a switch, the original data s
is replaced by the modified data R−1s, allowing the use of

reduced channel matrix A in the THP block.

0 5 10 15 20

10−4

10−3

10−2

10−1

100

Eb/N0

B
it

 E
rr

or
 R

at
e

THP
LR−THP

Fig. 1. Bit error rate of the Reconfigurable Tomlinson-

Harashima Precoding scheme with and without LR stage.

A detailed description of the THP precoding techniques

considered in this work can be found in several works as [7],

thus, we will not include such information in this paper. How-

ever, we found useful to address the mathematical operations

that each technique carries out in the practical reconfigurable

setup (see Table 1).

Controller

LR

OFDM

OFDM

OFDM

OFDM

FeedbackCSI
User
requirements

GPU/CPU

Data

SNR

A=H
s=s^

A=R-1H
s=R-1s^

THP

LR-THP

THP
BLOCK

(A,s)̂

Fig. 2. Reconfigurable Tomlinson-Harashima Precoding

scheme.

Table 1. Mathematical operations in the proposed scheme

A.- Preprocessing stage:

1.- switch(algorithm)

case(THP) :A = H

case(LRTHP) :A = R−1H

2.- A = L0Q0 = (L0G−1)(GQ0) = LQ

3.- Q+ = (GQ0)+ = QT
0 G

−1

B.- Per-symbol-vector processing stage:

1.- switch(algorithm)

case(THP) : ŝ = s

case(LRTHP) : ŝ = R−1s

2.- for k = 1, . . . , 2K

x̂k = ŝk −∑k−1
l=1 Lk,lx̃l

x̃k = x̂k mod A = x̂k −A
⌊
x̂k+A/2

A

⌋

end

3.- x = Q+x̃

4. IMPLEMENTATION OF THE PRECODERS ON
CUDA

4.1. GPU and CUDA

GPUs are becoming a meaningful choice to implement signal

processing algorithms due to their massive and intrinsically

parallel computational capability. The use of this hardware

can achieve high computation throughput by employing many

cores to execute the algorithms in parallel, as many works

on this topic show [2, 3]. On the other hand, Compute Uni-

fied Device Architecture (CUDA) [10] is a software program-

ming model that exploits the massive computation potential

offered by GPUs. A GPU can have multiple stream multipro-

cessors (SM), where each stream multiprocessor consists of 8

pipelined cores if CUDA capability is 1.2 or 1.3, 32 pipelined

cores if it is 2.0 [10] or even 48 pipelined cores if it is 2.1. A

CUDA device has a large amount of off-chip device memory

(global memory) and a fast on-chip memory called (shared

memory). In this model, the programmer defines the kernel

function which contains a set of common operations. At run-

time, the kernel is called from the main central processing unit

(CPU) and spawns a large number of threads blocks, which is

called grid. Each thread block contains multiple threads, usu-

1630

ally up to 512, and all the blocks within a grid must have the

same size. Each thread can select a set of data using its own

unique ID and execute the kernel function on the selected set

of data.

In the CUDA model, each thread executes the kernel

independently. Nevertheless, threads within a block can syn-

chronize through a barrier and write simultaneously to shared

memory to share data between them. In contrast, thread

blocks are completely independent and can only share data

through the global memory once the kernel ends.

We employed for the implementations the Nvidia Tesla

C2070 GPU. Its specifications can be seen in Table 2.

Table 2. Nvidia Tesla C2070 features.

Number of stream multiprocessors 14

Number of cores 448

Clock rate 1.15 GHz

Global memory 4 GB

Constant memory 64 kB

Shared memory per block 48 kB

The architecture of this GPU is Fermi, hence it supports

the maximum parallelism level with several kernel execution

overlapping, data copy and kernel execution overlapping, si-

multaneous host to device and device to host data copy, etc.

The installed CUDA toolkit and SDK version is 4.0 [10].

4.2. Proposed implementation

As we already mentioned, MIMO-OFDM systems can achieve

a very high spectral efficiency at the expense of high compu-

tational complexity. Although the multiuser precoding stage

does not seem a priori very computationally expensive, in-

deed it is, since the precoding stage must be executed for each

subcarrier. In this section, the proposed implementation on

GPU is described.

A single kernel is employed for the implementation of ei-

ther the THP or the LRA-THP algorithm, where the initial in-

put data will differ depending on the selected algorithm. The

grid configuration for the kernel (number of blocks and block

size) is shown in Fig.3. A bidimensional grid is considered

with bidimensional blocks with Nth = 16 threads per dimen-

sion. Since the channel is considered to remain constant dur-

ing Lch time intervals, each thread block will be in charge

of the processing of a subgroup of subcarriers associated to

these number of intervals. Thus, the number of subcarriers

to be processed by each block can be software-defined at the

beginning as Nsub = N2
th/Lch. For the case considered in

this work Nsub = 256/20 = 12 subcarriers/block. Then, for

a certain number of subcarriers the number of blocks per grid

is obtained as NB = Nc/Nsub, being the number of blocks

per dimension
√
NB .

Before starting the process, the channel matrices and sig-

nals to be precoded (H, s) associated to Lch time intervals

BLOCK
(0,0)

BLOCK
(0,1)

BLOCK
(0,NB-1). . .

GRID
BLOCK

THREAD
(0,15)

. . .THREAD
(0,0)

THREAD
(0,1)

THREAD
(1,15)

. . .THREAD
(1,0)

THREAD
(1,1)

THREAD
(15,15)

. . .THREAD
(15,0)

THREAD
(15,1)

BLOCK
(1,0)

BLOCK
(1,1)

. . .

. . .

BLOCK
(1,NB-1)

BLOCK
(NB-1,NB-1)

BLOCK
(NB-1,1)

BLOCK
(NB-1,0)

. .
 .

. .
 .

. .
 . . .

 .

. .
 .

. .
 .

Fig. 3. Grid distribution.

and Nc subcarriers are stored in GPU global memory. The

preprocessing stage of the algorithm is executed and its out-

put data (matrices L and Q+) are stored in GPU shared mem-

ory, which allows for a faster access. After this, all threads are

synchronized to fetch the data from shared memory and start

the per-symbol-vector processing stage. Vector x is obtained

and stored temporally in the registers and at the end copied to

global memory for its output.

5. RESULTS

In this section, the parallel implementation of the THP and

LR-THP algorithms on GPU was compared to their imple-

mentations in a high-performance CPU. The selected CPU

was an Intel Xeon X5680 at 3.33GHz with 96GB of DDR3

main memory and 12 MB of cache memory running Linux.

The compiler used was Intel C compiler (ICC) with the global

performance optimization -o3.

Without loss of generality, we consider the same number

of transmit and receiving antennas in the system, N = K.

The transmission is done using Nc subcarriers. As described

in LTE Release 10 [8], transmission bandwidths up to 100

MHz can be employed by means of the aggregation of up to

five component carriers as the ones in Release 8. Thus, the

transmission can be done over a maximum of 5 × 1200 =
6000 subcarriers.

Fig. 4 shows the speedup resulting of dividing the compu-

tational times to run the algorithms at the GPU by the com-

putational times of the implementations on CPU for a 4 × 4
system using double precision and different number of sub-

carriers. It can be observed that, while the GPU-based THP

implementation performs up to 7 times faster than its CPU-

equivalent, the LRA-THP implementation reaches a speedup

up to 5.5. Both speedups are quite promising, but it is inter-

esting to investigate the speedup reduction effect experienced

by the LR-THP with respect to the THP. For this purpose,

the speedup achieved by the implementation of only the LLL

stage was evaluated independently for the same system con-

figurations previously discussed. Results show that this par-

tial speedup ranges between 2 and 3, meaning that this stage

acts as a bottleneck for the implementation of the LR-THP.

As described in [10], any flow control instruction can

significantly impact the effective instruction throughput

1631

0 1000 2000 3000 4000 5000 6000
3.5

4

4.5

5

5.5

6

6.5

7

7.5

Number of subcarriers (Nc)

Sp
ee

du
p

THP
LR−THP

Fig. 4. Speed-up of THP and LR-THP schemes on GPU com-

pared to CPU for Lch = 20, N = 4 and 4-QAM.

achieved by the GPU by causing threads of the same warp

to diverge (i.e. to follow different execution paths). Indeed

this is what happens when the LLL is applied over different

channel matrices, since the LLL method contains two if state-

ments dependent on the processed channel matrix [5]. As said

in [10], this situation causes the serial execution of the dif-

ferent paths, thus increasing the total number of instructions

executed for this warp and consequently the computational

time.

In addition, the execution time of the THP and LR-THP

schemes over GPU is depicted in Fig. 5. It can be seen that

LR-THP has a considerably higher execution time than THP,

increasing the difference between them as the number of sub-

carriers increases. Observing the execution time of the LR-

stage used in LR-THP scheme, it can be noticed that this stage

takes even longer than Lch = 20 runs of the THP. This shows

again that the LLL method is not as suitable as the THP for

GPU implementation.

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

Number of subcarriers (Nc)

E
xe

cu
ti

on
 t

im
e

(m
s)

THP
LR−THP
LR stage

Fig. 5. Execution time of THP and LR-THP schemes over

GPU for Lch = 20, N = 4 and 4-QAM.

6. CONCLUSION

In this paper, a GPU-based implementation of the well-known

Tomlinson-Harashima precoding (THP) scheme combined

with a lattice-reduction (LR) stage has been presented. The

precoding stage is highly accelerated by processing simulta-

neously the calculations associated to each subcarrier through

forwarding their data to different threads. Moreover, due to

the reconfigurable nature of GPUs, it is possible to gate the

LR stage off when the user requirements are sufficiently

guaranteed by the THP. This way, computational cost and

performance can be traded.

The efficiency of the proposed approach was assessed

by comparing its computational time to the one taken by an

equivalent implementation on a high-performance CPU. Re-

sults showed that, while the GPU-based THP implementation

performs up to 7 times faster than its CPU-equivalent, the LR

stage implementation only achieves a speedup of 3. Despite

the fact that the LR cannot be as efficiently parallelized as

the THP, a speedup of 5.5 can be achieved when both are

combined. These results are promising since there is room

for further improvements by optimizing the speedup of the

joint scheme.

7. REFERENCES

[1] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bölcskei, “An

overview of MIMO communications - a key to Gigabit wire-

less,” Proceedings of the IEEE, vol. 92, no. 2, pp. 198–218,

Feb. 2004.

[2] M. Wu, Y. Sun, S. Gupta, and J.R. Cavallaro, “Implementation

of a high throughput soft MIMO detector on GPU,” Journal of
Signal Processing Systems, Sept. 2010.

[3] G. Falcao, V. Silva, and L. Sousa, “How GPUs can outper-

form ASICs for fast LDPC decoding,” in Int. Conference on
Supercomputing, Yorktown Heights, New York (USA), 2009.

[4] C. Windpassinger, R.F.H. Fischer, T. Vencel, and J.B. Huber,

“Precoding in multiantenna and multiuser communications,”

IEEE Transactions on Wireless Communications, vol. 3, no.

4, pp. 1305–1316, July 2004.

[5] A. Lenstra, H. Lenstra, and L. Lovász, “Factoring polynomials

with rational coefficients,” Math. Ann., vol. 261, pp. 515–534,

1982.

[6] D. Xu, Y. Huang, and L. Yang, “Improved nonlinear multiuser

precoding using lattice reduction,” Signal, Image and Video
Processing, vol. 3, no. 1, pp. 47–52, Feb. 2009.

[7] S. Roger, F. Domene, A. Gonzalez, V. Almenar, and G. Piñero,

“An evaluation of precoding techniques for multiuser commu-

nication systems,” in ISWCS, York, UK, Sept. 2010.

[8] 3GPP TS 36.201, V10.0.0, “Evolved Universal Terrestrial Ra-

dio Access (E-UTRA); Physical Layer - General Description,”

Dec. 2010.

[9] M. Li, D. Novo, B. Bougard, C. Desset, and A. Dejonghe, “A

system level algorithmic approach toward energy-aware SDR

baseband implementations,” in ICC, Dresden, Germany, June

2009.

[10] “NVIDIA CUDA C programming guide,” Online at:
http://developer.download.nvidia.com/.

1632

