EFFICIENT DATA TRANSFER OPERATIONS
FOR A SIMD PROCESSOR ARRAY SYSTEM

Hanno Lieske, Shorin Kyo, Shohei Nomoto, Sunao Torii, Yuki Kobayashi, Yasuyuki Ninomiya,
Shinichiro Okazaki

Advanced LSI Systems Research, LSI Research Laboratory, Renesas Electronics Corporation, Japan

ABSTRACT

The SIMD (single instruction, multiple data) control style
achieves a very cost effective processor element (PE)
control mechanism. In this paper, two efficient data transfer
operations for a SIMD PE array processor are proposed to
address the inefficiency of most SIMD processor arrays in
performing irregular memory access per PE. First, the SIMD
random access provides simultaneous data transfer of
randomly, from each PE independently addressed elements.
Second, the SIMD ROI (region of interest) access enables
concurrent data transfer of ROI areas with optional different
ROI parameters for each PE. Speed-up values for both new
transfer operations show an at least six times faster exe-
cution and the synthesis output reports an area increase of
merely 1% for a 32 PE SIMD array processor configuration.

Index Terms— Data transfer, SIMD, ROI, Random
Access

1. INTRODUCTION

Data processing algorithms can be grouped based on their
irregularity. Fig. 1 shows both the classification of
algorithms and parallelism exploitation methodologies based
on data processing irregularities as well as the proposal goal
of this paper which is to expand the efficiently operating
SIMD area. In x-direction, the control flow irregularity level
increases from left to right side while in y-direction the data
access irregularity level increases from down to up side.

The lower left side holds algorithms which have a high
control flow and data access regularity, like for example the
pixel wise data manipulation on image pixels. These
algorithms normally have a large data level parallelism and
are best suited for the cost effective SIMD array processors,
for which various designs have been proposed [1][2][11].

For the upper left side, despite that the algorithms have
regular control flow, due to the irregularity of data access,
most existing SIMD array processors remain in-effective
because normally most of them are equipped with a DMA
(direct memory access) transfer unit for burst transfer of data
locating at continuous addresses. SIMT (single instruction
multiple threads) [3] architectures extend the SIMD
paradigm to address the irregular data access issue based on

978-1-4673-0046-9/12/$26.00 ©2012 IEEE

1625

h .
Data access|irregularity

7 N

SIM MIMD
(Modeling)
Control flow,,
irregularity
. SIMD
- (Image pixel wise (Cryptography)
AN Y -

Fig. 1 Parallelism exploitation methodology classification
based on irregularities and the proposal goal of this paper

splitting the single instruction stream into threads which are
processed sequentially for dynamically hiding the latency of
irregular data accesses by transferring the data in the
background of foreground running threads. The MIMD
(multiple instructions, multiple data) processing style in
form of MIMD processors [4] or mixed mode SIMD/
MIMD processors [5] is of course also capable of fully
exploiting irregular data accesses; in fact, due to the multiple
instruction streams of the MIMD processing style,
irregularity on data access or control flow level doesn’t
result in a penalty.

However, increase in hardware cost is normally high to
support SIMT processing, due to the need of many additi-
onal sets of register files for storing thread contexts. MIMD
processors also suffer the disadvantage of a larger die cost
and power consumption compared to SIMD architectures. It
is shown in [5], e.g., that a MIMD processor element can re-
quire four times more logic than a SIMD processor element.

This paper proposes a cost effective way to support
background irregular data accesses for SIMD array
processors. Specifically, two data transfer operations are
proposed, the SIMD random access for single data elements
chosen by PE, and the SIMD ROI access for region of data
elements chosen by PE.

Due to the support of these two types of irregular data
access, the efficiency of using SIMD processors for major
classification algorithms is expected to be greatly improved.
For example, the region in external memory holding feature
or dictionary data for the case of the Viola & Jones

ICASSP 2012

y 4

PE

PE: processing element
IRAM: internal RAM

R: register

CP: control processor
EMEM: external memory

k
Pipelined ring bus,
.

Fig. 2 Example SIMD architecture model block diagram

algorithm [6], which is a frequently used classification
algorithms for pedestrian detection [7] or face detection [8],
will become efficiently accessible by SIMD processors.
Other works [9][10] face the irregular data load
problem by adopting multi-port memories to access data in
the external memory (EMEM) for all PE in parallel, which
eliminates the EMEM data transfer bottleneck but increases
the chip costs due to a higher number of ports. Additionally,
the solution in [9] with large multi-port memory has the
drawback of large memory area increase, while the solution

with small multi-port memory[10] limits the area of usability.

The remainder of this paper is structured as follows.
Section 2 gives an overview of a SIMD architecture model.
Section 3 presents operation and implementation details of
the new proposed data transfer operations, the SIMD ROI
and the SIMD random access for SIMD architectures.
Section 4 shows the effectiveness of the proposed transfer
operations and summarizes synthesis results. Finally section
5 gives a conclusion.

2. SIMD ARCHITECTURE MODEL

A block diagram of the SIMD architecture model is shown

in Fig. 2. This architecture model consists of an array of PEs.

Each PE has its own internal RAM for local data storage.
Hereafter the collection of internal RAM of all PE will be
collectively referred to as IMEM. A CP (control processor)
is used to broadcast instructions to the PE array in a SIMD
style. For data transfer between EMEM and IMEM,
normally a pipelined ring bus can be used to implement
autonomous DMA burst transfers. The DMA controller
located in CP controls the ring bus so that data transfers are
performed by cycle-wise shifting data through the register on
the ring bus independently with the PE array operation.
Hereafter such DMA controller for data transfer between
EMEM and IMEM will be specifically referred to as the line
transfer (LT) control unit. To simplify the design of the LT
control unit, the bit width of a ring bus buffer is chosen as a

multiple of the EMEM and IMEM access bit width per cycle.

3. NEW LINE TRANSFER MODES

The key idea for achieving efficient implementation of the
SIMD ROI and the SIMD random access is achieved by

1626

| PE array + IMEM | | PE array + IMEM |
|: Shift register r—»| Shift register
LT control LT control

>

[Parameter set| Parameter set

T3 x .
H Multiple
| CP || EMEM | Access |l parameter
control sets
Lo, e S—
~—— tme [__cp__ | EMEM
Transfer request
time points from CP T | >
— data f time

"""""" data + ctrl Transfer request time point from CP

Fig. 3 Conventional (left) and proposed (right) architecture

taking out the control part of these functions from the CP
and placing this control part in a separate hardware control
unit, the access control unit (Fig. 3), which can operate in
parallel to the CP.

On the left side a conventional architecture is shown. In
such architecture, SIMD ROI or SIMD random data access
normally will need to be implemented in foreground by
using the CP to issue sequential address calculations and
load/store instructions. As the CP also controls the PE array,
using CP instructions to perform ROI or random data access
decreases the performance of the PE array.

For the proposed architecture on the right side, some
small access control logic for support of SIMD ROI and
SIMD random access control as well as register for holding
multiple parameter sets are added to assist the existing LT
control unit. For SIMD ROI and SIMD random access data
transfers, first the CP preloads the parameter sets. Then,
instead of generating the request addresses inside the CP, the
CP passes the transfer control over to the access control
logic, which generates the request addresses autonomously.
After generation, the single element transfer request
addresses are sent to the LT control unit which autono-
mously transfers the data between EMEM and IMEM.

3.1. Line transfer in ROI mode

The line transfer in ROI mode supports a background
operating SIMD ROI transfer, a concurrent transfer of the
ROI areas from/to all PE, where each PE specifies the
parameters of its ROI area independently from the other PEs.

For the SIMD ROI transfer, two fields have to be
prepared in IMEM. The first field holds the ROI parameters,
consisting of start address A;...Ay, width W,...Wy and
height H;...Hy, where N represents the number of PE. The
second field is reserved for the data. In a first step, the
parameter fields of all PE are read from IMEM, transferred

Y
H, Hy
C I

..............

PE, PE,==:PEy

PE, PE,==:PEy

PE, PE,=='PEy

Fig. 4 Line transfer in ROI mode read transfer example

over ring bus and stored inside the LT control unit. In a
second step, the start addresses are cycle wise sent to
EMEM starting with address A; and end up with address Ay.

The addresses (A;...Ay) are repeatedly used as the base
address while each time an offset address is also added to
produce the real access address for the EMEM. The value of
a counter is used as the offset address, which incrementally
counts up until the number of time equals to the width
specification (W;...Wy). Then, a common row offset
parameter specifying the distance between two neighbored
rows in EMEM is used to increment the addresses (A;...Ay)
so as to update the base addresses to point to the next rows
of all ROI areas. For a read access, the received EMEM data
is passed to the ring bus. Supposing that the ring bus buffer
is A bytes wide and the EMEM allows per cycle B bytes
access with A/B € IN>0, the ring bus is every time shifted
after A/B EMEM data transfer cycles.

After the data for all PE have been received from
EMEM and shifted to the correct position on the ring bus,
the data is stored concurrently to IMEM. In Fig. 4, the data
transfer operating mode is exemplarily shown for a read
transfer where A is equal to B, i.e., element width is equal to
bus width. In the initial state, the ring bus is here empty
(white colored ring bus buffers). In a first step (right side),
one element is loaded from ROI area Al to the ring bus
(gray colored ring bus buffer). Then the data is shifted on
the ring bus and the next element is transferred from the next
ROI area. In the middle, the state is shown where one
element from each ROI area has been transferred to the ring
bus. In the following clock cycle, the data is written in
parallel from the ring bus buffer to IMEM (left side).

3. 2. Line transfer in random access mode
The line transfer in random access mode operates very

similar to the line transfer in ROI mode. It supports a
background operating SIMD random access transfer, where

1627

on internal side again two fields have to be prepared to hold
the random access parameters and the data. The difference is
that instead of one parameter set consisting of start address,
width and height a number of random access addresses are
stored into the IMEM parameter field. Then, instead of
transferring the parameter set and then all the data sets, one
address for each PE followed by one data element for each
PE is transferred in a loop over all data elements.

4. EVALUATION AND SYNTHESIS RESULTS

To show the effectiveness of the new line transfer modes
without interference of the chosen EMEM type, example
SIMD random access and SIMD ROI transfers have been
evaluated without loss of generality for a memory access
time of one clock cycle.

For the emulation of the line transfer in random access mode,
the fastest implementation is a successive request of single
random accesses from CP to EMEM for each PE. Therefore,
first one address from each PE has to be transferred from
IMEM to CP and after access of the EMEM in case of the
read direction, read data elements have to be transferred
back through CP to PE before they are stored concurrently
from PE into IMEM. The time for the access can be
calculated by (1). The outer loop runs over NOgigm rows
while the inner loop runs over the number of PEs. tgigm
defines the time required to transfer one parameter from
IMEM to CP and to transfer one data element from EMEM
through CP to PE. tpg and tg gm row 1 define the time for the
invariant part on PE level and data element row level
respectively.

For a processor with the proposed line transfer mode,
the timing can be calculated by (2). The equation has one
loop running over NOgigm row- The time tppra defines the
time for the parameter transfer from IMEM to CP, which has
to be added for each element row transfer. The time
teem row defines the time for one element row transfer from
EMEM to IMEM and trgq defines the time for the invariant
part of the SIMD random access transfer operation. The
clock cycles (cc) for the parameters below have been deter-
mined by MODELSIM simulation of the design in [5] with
and without new proposed line transfer function. Fig. 5 left
side shows the SIMD random access transfer speed-up chart
for NOpg equal to 32. The asymptote of the speed-up value S,
which is defined by the maximal speed-up S,.., iS given by
(3). For example, S, will be about 6.28 if NOpg is 32.

Temu= terem row 117 NOgrem row * (teg + NOpg * tgrpm) (1)
Tivp = treg + NOgrem row * (tpara T teLEm rROW) 2
teLem Row 1= S¢c, tpg = 7cc, tppm = 9cc
treq = 9¢C, tpara = 10cc; terpm rRow = 37¢C
Smax = (tpe + NOpg * terem) / (trara T teLEm rROW) 3)

For the emulation of the line transfer in ROI mode, the
fastest implementation for the read direction is first the word

wise direct read access to the elements of each ROI area by
the CP, and second transferring the read elements from CP
to PE, and finally storing the elements into IMEM. The time
for the access can be calculated by (4). The equation has
three loops; the outer loop runs over the number of PEs
(NOpg), the second loop runs over the number of data
element rows inside the ROI area (ROIy) while the inner
loop runs over the number of data elements per row (ROIy).
The variables tpg, ty, ty define the time for the invariant part
on each level while the time tg gy defines the time required
to transfer one data element from EMEM through CP to PE
and to store the data element into IMEM.

For a processor with the proposed line transfer mode,
the data transfer time can be calculated by equation (5). The
equation holds one loop running over the number of data
element rows (NOgigm row = ROIy * ROIy). terem row
defines the time for each data element row transfer, while
tpara defines the time for the initial parameter transfer from
IMEM to CP and finally trgo defines the time for the
invariant part of the SIMD ROI transfer operation. The
clock cycles for the parameters have been determined by
MODELSIM simulation of the design in [5] with and
without new proposed line transfer function.

Fig. 5 right side shows the SIMD ROI transfer speed-up
chart for an example 32PE SIMD processor (NOpg = 32).
When increasing the size of the ROI area, the speed-up
decreases because the invariant initialization parts get less
important. The asymptote of the speed-up value S, which id
defined by the minimum speed-up S, is given by (6). For
NOpg equal to 32, S, will be about 6.05.

Temu= tpe + NOpg * (tv + ROLy * (t + ROIy * tgrem)) (4)
Tive= treq * tara + NOgLeM row * tELEM ROW Q)
tpg = 9CC, ty = 1 ICC, ty = SCC, teLEM = Tce

treq = 9¢c, tpara = 9¢C, terem ROW (NOPE = 32) = 37¢C
Siin= (NOpg * teLem) / teLEM ROW (6)

The equations show that next to the background control
for the newly proposed line transfer modes, the transfer time
itself can be also reduced by not transferring the data one-
by-one but in data element rows with NOpg data elements.

A synthesis has been performed for the design in [5]
including the two irregular data access modes by using
Synopsys design compiler and a 40nm CMOS library. The
synthesis output shows that the design is able to run at 200
MHz and that the area increased by merely 1% for a 32 PE
configuration at 200 MHz. Due to the fact, that the
additional logic is not lying inside the critical path, a
frequency decrease does not occur.

Comparing the proposed DMA transfer modes with a
SIMT design [3], the SIMT design is more general purpose
in latency hiding because the proposed scheme can only
achieve latency hiding if the data access addresses are in
advance predictive. But since the irregular access addresses
existing in major classification algorithms are predictive,

1628

Speed-up -u%
12
6
8
5.
5 4
4 4 18
=g 4 g 812 g 1?
element rows- 64 256 hor. size vertical size

Fig. 5 SIMD random access (left) and SIMD ROI (right)
data transfer speed-up for 32 PE

and because a SIMT design will be impossible to implement
with little area increase, the proposed DMA transfer modes
will be more preferable, especially for cost sensitive SIMD
array processor designs in the embedded area.

5. CONCLUSION

In this paper, efficient data transfer modes for a SIMD
processor array system have been presented. While the line
transfer in random access mode offers simultaneous data
transfer of addresses, which can be randomly chosen from
each PE, the line transfer in ROI mode enables concurrent
data transfer of ROI areas with optional different ROI
parameters for each PE. Operation details have been presen-
ted and evaluation results have been shown for both pro-
posed transfer modes. Speed-up values report for large areas
an at least six times faster data transfer execution, while the
synthesis output of an example implementation shows an
area increase of merely 1% for a 32 PE SIMD array
configuration at 200 MHz in a 40nm CMOS process.

REFERENCES

[1] S. Kyo, et al., “A 100 GOPS In-vehicle Vision Processor for
Precrash Safety Systems ...”, VLSI symposium, pp.28-29,2008
[2] M. Nakajima, et al., “A 40GOPS 250mW Massively Parallel
Processor based on Matrix Architecture”, ISSCC, 2006

[3] “Technical brief: NVIDIA GeForce GTX 200 GPU Architec-
tural Overview”, TR TB-04044-001 v01, NVIDIA Corp., May 2008
[4] K. Guttag, et al,A Single-Chip Multiprocessor for Multimedia:
the MVP”, I[EEE CG&A, Vol. 12 No. 6, Nov. 1992, pp.53-64

[51 S. Kyo, et al., “A low-cost mixed-mode parallel processor
architecture for embedded systems”, Proceedings of ICS, 2007
[6] P. Viola and M. Jones, “Robust real-time object detection”, TR
CRL 2001/01, The Cambridge Research Laboratory, Feb. 2001

[7] C. Papageorgiou, et al., “A Trainable Pedestrian Detection
system”, Intern. Journal of Computer Vision, pp. 1:15-33, 2000

[8] M. Reuvers, “Face Detection on the INCA™, Master’s Thesis,
University of Amsterdam, 2004

[9] D. Naishlos, et al, “Vectorizing for a SIMdD DSP
Architecture”, CASES 2003, San Jose, California, USA. ACM

[10] H. Chang, et al., “Efficient Vectorization of SIMD Programs
with Non-Aligned ...”, CASES 2008 , USA, 2008, pp. 167-175.
[11] J.P. Wittenburg, et. al., “Realization of a Programmable
Parallel DSP for High ...”, Proceedings of DAC, 1998, pp. 56-61.

