
PARALLELIZED RANDOM WALK ALGORITHM FOR BACKGROUND SUBSTITUTION
ON A MULTI-CORE EMBEDDED PLATFORM

Yutzu Lee1, Chen-Kuo Chiang2, Yu-Wei Sun1, Te-Feng Su2, Shang-Hong Lai1,2

Institute of Information Systems and Applications1, Department of Computer Science2

National Tsing-Hua University, Hsin-Chu, Taiwan
s9965508@m99.nthu.edu.tw, {ckchiang, tfsu, lai}@cs.nthu.edu.tw, tokillhe@yahoo.com.tw

ABSTRACT

Random Walk (RW) is a popular algorithm and can be
applied to many applications in computer vision. In this
paper, a fast algorithm is proposed to solve the large linear
system in RW based on adapting the Gauss-Seidel method
on a multi-core embedded system. Two tables, TYPE and
INDEX, are introduced to fast locate the required data for
the close-form solution. The computational overhead, along
with the memory requirement, to solve the linear system can
be reduced greatly, thus making the RW algorithm feasible
to many applications on an embedded system. In addition,
the proposed fast method is parallelized for a heterogeneous
multi-core embedded platform to make the most use of the
benefits of the system architecture. Experimental results
show that the computational overhead can be significantly
reduced by the proposed algorithm.

Index Terms— Random walk, image segmentation,
background substitution, parallelization, multi-core
embedded system.

1. INTRODUCTION

Random Walk (RW) algorithm, firstly proposed by
Wechsler and Kidode [1] for texture discrimination, has
been applied to various problems recently, such as image
segmentation [2], colorization [3] and stereo matching [4].
As humans are the principal subject of images, segmentation
of humans is important for certain tasks of image editing,
such as object selection and image synthesis. Due to the
strong demand and rapid development of image editing and
processing, there has seen increasing attention to accurate
foreground extraction from images. In [5], RW is adopted to
extract foreground objects by background subtraction using
approximate seed points.

The recent emergence of multi-core-embedded systems
enables more and more image/video applications. Multi-
core architecture provides cost-effective and energy-
efficient computations. It is suitable for heavy-workload
applications, such as the aforementioned image
segmentation problems.

In this paper, we propose a fast method for applying the
Random Walk algorithm for background substitution on a
heterogeneous multi-core embedded system. By building the
proposed Type and Index tables, the computational overhead,
along with the memory requirement, to solve a large linear
system in RW can be reduced greatly, thus making the RW
algorithm feasible to many applications on an embedded
system. In addition, a parallel algorithm has been developed
for the proposed fast RW to utilize the benefits of the
architectural features of a multi-core system. We
demonstrate our method by the background substitution
application in a multi-core embedded platform, called PAC
Duo (PAC means Parallel Architecture Core) [6]. This
multi-core platform contains an ARM9 processor and two
PACDSP cores. The PACDSP core was developed with
innovative distributed ping-pong register file and variable-
length VLIW encoding techniques.

2. RANDOM WALK ALGORITHM REVISIT

A graph has vertices and edges

. A weighted graph has a value assigned to
each edge, and it is called a weight. The weight between two
vertices and is denoted by . The degree of a vertex
is . In this work, the graph is assumed to be
undirected. In other words, .

The energy function to be minimized in RW [7] is:

where the (i,j)-th entry in L, denoted by and associated
with vertices and , represents the combinatorial
Laplacian matrix [8] which is defined by

Partitioning the vertices into marked node set (seeds)
and unmarked node set , Eq.1 can be decomposed into:

1621978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Differentiating the above matrix form for the energy
function with respect to and setting it to zero yields

After computing the likelihood , each node vi in VU can
be assigned a class label, foreground or background.

3. PROPOSED FAST RANDOM WALK ALGORITHM

Based on the above formulation, the dimension of the
matrix L in a 256 by 256 image is 65525 by 65525. Directly
solve the linear system is not feasible for an embedded
system. Since the matrix L records only the relations
between pixels and their neighbors, it is pretty sparse. A
naïve method is to build L with link list. Here, a fast method
is proposed to solve the unknowns with two additional
tables. The proposed method is designed to be highly
parallelizable and suitable for running on a multicore
architecture. Experimental results show that the proposed
method offers over an order of magnitude speed increase
compared to the naïve implementation.

3.1. Gauss-Seidel Method

The Gauss-Seidel method [9] is an iterative technique for
solving a system of n linear equations Ax=b in an iterative
fashion, which uses previously computed results to update
the solution as soon as they are available. The update
equation can be simply written as:

(5)

)1()(

)(

ii

ij ij

k
jij

k
jiji

k
i a

xaxab
x

where aij and bi are the entry from matrix A and vector b,
respectively, and k is the iteration number.

3.2. Data Arrangement

Here, we use a simple 3x2 image as an example to show
how the sparse linear system of random walk can be solved
efficiently. In the 3x2 image, pixels marked by blue circle
shows the foreground seed points, and the background seed
is marked by green circle. If the neighboring relation is
defined by 1:upper, 2:left, 3:right and 4:down neighbor, the
weight can be built by a 6x4 matrix, as shown in Fig. 1.
Empty entries mean the neighbors do not exist. Degree, the
pixel values of seeds and unseeds are stored as a 1-D array.

Fig. 1. A simple example shows the image and the
corresponding data structure.

According to Eq. 4, the linear system has three
unknowns: x3, x4 and x5. Based on Eq. 5 and the existence of
the four neighbors, the solution is shown in Fig. 2. Note that,
to obtain the solution, it requires the data from seed (X1, X2,
X6) and unseed (x3, x4, x5). Conceptually, the required data is
listed in the Solution Table. In practical, it needs to scan
both Seed and Unseed array to retrieve the required data
index and the pixel values, thus very time-consuming. In the
next section, two tables are proposed to realize the Solution
Table efficiently.

Fig. 2. A simple example of the linear system and the
Solution table for the Random Walk algorithm.

3.3. TYPE and INDEX Tables

To fast retrieve the data required for the closed-form
solution, we first define the data type: 1 for unseed points, 2
for seed points and 0 for non-existence neighbors.
Compared to the Solution Table, a TYPE Table can be
created as shown in Fig.3. Another table, INDEX Table,
records the order of seeds and unseeded points in their own
1-D arrays. For example, seeded point x2 has the order of 2
in the Seed array and the order of unseeded point x5 is 3 in
the Unseed array.

Fig. 3. A simple example of TYPE table and INDEX table.

After these two tables are established, the solution can

be obtained by scanning the each row in TYPE Table in
order. The non-zero entries indicate which data array to
retrieve data (Seed or Unseed). The co-located entries in
INDEX Table shows where to get data inside the data array
by using the array index. Now, let’s go back to the closed-
form solution of x3:

TYPE Table INDEX Table

2 3

Solution Table

Image Weight Degree Seed

Unseed
Neighboring

1622

ALGORITHM 1: Fast Random Walk Algorithm

1 Input: Image I.
2 Initialization: Set k 1 and ε .

3 Calculate Weight and Degree matrices. Store seeded
and unseeded points into Seed and Unseed array.

4 repeat {Main loop}:
5 If k ==1, build TYPE and INDEX Tables.
6 Solve by Gauss-Seidel Method.
7 k k + 1. Continue.
8 End if.
9 Update by the solution from previous iteration.
10 k k + 1.
11 until
12 Assigning label to each node by the probability.

(6)
d

XX
x

3

6362321k
3

)(

To solve x3, we first scan the first row in TYPE Table. The
two non-zero entries show the data should be retrieved from
Seed array. Then, the co-located entries in INDEX Table
provide the array index 2 and 3. Thus, X2 and X6 can be
obtained easily and fast. We still need w32 and w36. By
storing the seeded and unseeded data from Weight into two
separate matrices in advance (saving the data in the red
frame into a separate matrix in Fig.1), w32 and w36 can be
obtained easily by using the same data index of non-zero
entries in TYPE Table. The solution is considered as the
probability whether it is foreground or background points.
The details are given in Algorithm 1.

3.4. Parallelization Strategy

Recall that there are two important characteristics of the
Gauss-Seidel method. Firstly, the computations appear
potentially to be serial. Since each component of the new
iterate depends upon all previously computed components,
the updates cannot be done simultaneously. Secondly, the
new iterate x(k) depends upon the order in which the
equations are examined. If this ordering is changed, the
components of new iterates will also change. In other words,
the solution depends on the iteration order and the equation
order within each iteration. To achieve parallelization, each
component is computed by using all the results from the
previous iteration to reduce the data dependency.

4. PARALLELIZATION ON A MULTI-CORE
EMBEDDED PLATFORM

PAC Duo evaluation board equips a multi-core SoC
consisting of three processors, one ARM9 core and two
DSPs. It is suitable for highly parallelizable multimedia
applications in embedded systems. Fig. 4 illustrates the
PACDSP architecture. All cores are connected with a AHB
bus along with 256MB share memory. The DSP used in

Fig. 4. PACDSP Architecture.

Fig. 5. The parallelization of the proposed method.

PACDuo SoC is PACDSP which is a 32-bit, fixed-point,
and five-way issue VLIW DSP. PACDSP is comprised of
two Load/Store Units (LSU), two Arithmetic Logic Units
(ALU), and one Scalar Unit. LSU and ALU are organized
into two clusters, each containing its own private register
file and being capable of accessing public register file.

In this parallelization mechanism, the seed points are
decided first by the initialization method. The calculation of
Weight and Degree matrices are assigned to ARM processor
because it requires more floating point operations. Then,
PACDSP cores are dedicated to solve the linear system by
the Gaussian-Seidel method. A lock mechanism is used to
control synchronization between ARM processor and
PACDSP cores. If the lock value is one, it indicates
PACDSP core is performing the task. Otherwise, it waits
until the PACDSP core is unlocked. Since each core
performs the computational tasks independently, it is easy to
extend this parallelization strategy to more PACDSP cores.

5. EXPERIMENTAL RESULTS

We evaluate the proposed fast RW algorithm by a
background substitution application. Face detection is
performed along with a human shape prior model to decide
the rough area of human and the background. Then, these
areas are assigned to foreground and background seed points.
After applying the RW algorithm, the foreground objects
can be extracted and composited with a new background.

We first compare the proposed fast RW algorithm to
the baseline method and the link list method in C code

Solution from
previous iteration

Image Data

Tables

DSP

DSP

Lock=1 operating
Lock=0 waiting

Lock=1 operating
Lock=0 waiting

x(k)
i,j+1

x(k)
i,j

Input Image
Sequences

Related
Tables

ARM

Shared Memory

1623

TABLE. 1. The average execution time (ms) of solving the
linear system in RW algorithm by the proposed method,
Baseline and Link List in ten 320x240 images in C code.

Time (ms) Baseline Link List Proposed

Itr k = 0 134.89 5557.64 135.21

Itr k = 1.. N 134.89 0.5813 0.4628

Total 146700 5839.51 580.30

Fig. 6. Sample Results of the background substitution.

implementation. The baseline method solves the linear
system in RW directly (conceptually retrieve data in the
Solution Table). The second method implements the matrix
L using link list structure. All tests are performed on an Intel
Core2 CPU 6320 at 1.86 GHz without parallelization. We
have tested ten 320x240 images and calculate the average
time. Table 1 shows the execution time of solving the linear
system in RW algorithm with the three methods. Note that
since the baseline method retrieve data in the same manner,
the execution time remains the same in each iteration. In
Link List and the proposed method, they need to build the
related structure and tables in the first iteration, thus the
execution time is much slower than the other iterations.
Overall, the proposed method is about 10 times faster than
Link List and 252.8 times faster than the Baseline.

We also perform the experiments on the PAC Duo
platform to evaluate the speedup ratio and the overall
performance after parallelization. The clock frequency is set
to 150 MHz. Since PACDSP and ARM9 in the PAC Duo
platform support different instruction sets, the proposed
system needs two sets of compilation toolkits to conduct the
final executable. For the code running on ARM9, we used
Sourcery G++ Lite Edition ARM 2008q3 cross-compilation
toolkit to build the code. On the other hand, we used pacc32,
an open64-based cross-compilation toolkit, to build the part
of code that is partitioned to PACDSPs. We set the
optimization level of both toolkits to O3.

The average execution time of each component in the
background substitution system by the proposed fast method
and after parallelization for ten 320x240 images on PAC
Duo platform is shown in Table 2. From the first column,
we can see that the system bottlenect lies in the component
of solving the linear system of RW. After parallelization
with the additional two DSPs, the time of “Linear System”

TABLE. 2. The average execution time (s) of each
component in the background substitution system by the
proposed fast method and the parallelization in ten 320x240
images on PAC Duo.

Component Fast
Algorithm Parallel Speedup

Ratio
Face Detection 0.149s 0.149s 1.0

Gray Image 0.421s 0.421s 1.0
Down Sampling 0.006s 0.006s 1.0

Weight Calculation 0.032s 0.029s 1.1
Prior Model 0.110s 0.111s 1.0
Initial Guess 0.003s 0.003s 1.0

Linear System 3.790s 1.665s 2.2
Up Sampling 1.4309s 0.409s 3.49

Image Matting 0.138s 0.137s 1.00

can be reduced by nearly 2.2 times. It is also interesting that
an optional down/upsampling approach can also improve
the entire system performance. Fig. 6 shows some samples
results of background substitution.

6. CONCLUSION

In this paper, a fast algorithm is proposed to speedup the
process of solving the large linear system in Random Walk
algorithm. Two tables, TYPE and INDEX, are created to fast
calculate the closed-form solution. Then, the proposed
method is parallelized to utilize the benefits of the
architectural features. The experimental results show
significant speed-up after applying the proposed method.

REFERENCES
[1] H. Wechsler and M. Kidode, “A Random Walk Procedure for
Texture Discrimination,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. PAMI-1, no. 3, pp. 272–280, 1979.
[2] Y. Lan, C. Li, Y. Zhang and X. Zhao, “A Novel Image
Segmentation Method Based on Random Walk”, PACIIA 2009,
Asia-Pacific Conference on Computational Intelligence and
Industrial Applications, Vol. 1, pp. 207-210, 2009.
[3] T. H. Kim, K. M. Lee, and S. U. Lee, “Edge-preserving
Colorization Using Data-driven Random Walks with Restart,” In
Int'l Conf. Image Processing (ICIP), pp. 1641, 2009.
[4] R. Shen, I. Cheng, X. Li, and A. Basu, "Stereo Matching Using
Random Walks," Proc. Int'l Conf. Pattern Recognition, 2008.
[5] T. H. Kim, K. M. Lee, and S. U. Lee, “Background Subtraction
using Random Walks with Restart,” The 12th International
Workshop on Advanced Image Technology, 2009.
[6] T.-J. Lin, C.-N. Liu, S.-Y. Tseng, Y.-H. Chu and A.-Y. Wu,
“Overview of ITRI PAC Project,” in IEEE Int'l Symp. on VLSI
Design, Automation and Test, 2008, pp. 188 –191.
[7] L. Grady. “Random walks for image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
28(11):1768–1783, 2006.
[8] R. Merris, “Laplacian Matrices Of Graphs: A Survey,” Linear
Algebra and its Applications, 197, 198:143–176, 1994.
[9] R. Barrett and M. Berry, “Templates for the Solution of Linear
Systems,” 2nd ed. Philadelphia, PA: SIAM, 1994.

1624

