
MULTI-USER REAL-TIME SPEECH RECOGNITION WITH A GPU

Jungsuk Kim and Wonyong Sung

Department of Electrical Engineering and Computer Science, Seoul National University
599 Gwanangno, Gwanak-gu, Seoul, 151-744, Korea

Email: kimjs@dsp.snu.ac.kr, wysung@snu.ac.kr

ABSTRACT

We have developed a multi-user large vocabulary speech
recognition system employing a fully composed one-level
weighted finite state transducer (WFST) based network on a
Graphics Processing Unit (GPU). This system improves the
overall throughput and latency of speech recognition engine
which processes multiple users’ utterances at the same time
with efficient scheduling, parameter sharing, and commu-
nication overhead reduction techniques. We conduct both
batch speech simulation and trace driven online simulation to
access the performance of the developed system. Traces are
generated based on a queueing model.

Index Terms— Speech recognition, LVCSR, GPU, Dis-
tributed Speech Recognition, WFST

1. INTRODUCTION

Automatic speech recognition (ASR) is widely adopted as a
convenient user interface in many handheld devices. Since
large vocabulary speech recognition on an embedded system,
such as a cellular phone, consumes much power, it is desired
to employ the distributed speech recognition (DSR) technol-
ogy that conducts speech recognition on a remote server [1]

The principal client-server framework of the DSR is pre-
sented in Fig. 1. The client side performs the front-end of
the speech recognition system such as the feature parameter
extraction. These features are transmitted over a communi-
cation channel, and delivered to remote back-end servers. In
the server side, multiple requests are dispatched by the speech
recognition proxy (SRP) and processed by speech recognition
engines [1]. In practice, a DSR server should quickly answer
to multiple requests simultaneously with given computing re-
sources. Most of the the current speech enabled web servers
apply single user speech recognition in a time-multiplexed
way. This system can be modeled as an M/M/1 queue model

This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (No. 2011-0027502)
and by the MKE (The Ministry of Knowledge Economy), Korea and Mi-
crosoft Research, under IT/SW Creative research program supervised by the
NIPA (National IT Industry Promotion Agency) (NIPA-2011-C1810-1102-
0018), also by the Brain Korea 21 Project.

Fig. 1. The principal client-server framework of the Dis-
tributed Speech Recognition.

which consists of a single wait queue and a single server [2].
Note that the notation M/M/1 is used to describe a queue-
ing system, where the first M specifies that the arrival pro-
cess is Poisson, second M denotes that the service times are
i.i.d. exponential random variables, 1 specifies the number of
servers. In this model, the server only processes one request
at a time, thus the input utterances from multiple users have
to wait in the queue until the server is available. Therefore,
the wait time in the queue can increase the latency and reduce
the throughput, especially in heavy work load situations.

Recently graphic processing units (GPUs) gain popular-
ity not just in personal desktop but also in server systems.
Because the speech recognition process embeds many fine-
grained parallelism, there have been various researches on the
parallelization of them on a GPU [3, 4, 5, 6, 7]. The GPU
based speech recognition engine is usually much faster than
real-time for a single user service. However, for a multi-user
service, the wait time minimization is greatly needed. But,
previous approaches concentrate on improving the recogni-
tion speed of a single utterance. In this work, we try to reduce
the latency and increase the throughput of multi-user speech
recognition with a GPU based server, instead of just minimiz-
ing the execution time for a signal user speech.

This paper is organized as follows. Section 2 presents op-
timization techniques including efficient scheduling, parame-
ter sharing and communication overhead reduction. Section 3
shows the experimental results. Finally, concluding remarks
are given in Section 4.

1617978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Fig. 2. Scheduling schemes of multiple utterances. (a) Time
multiplexed (b) Proposed

2. OPTIMIZATION TECHNIQUES FOR
MULTI-USER SPEECH RECOGNITION

2.1. Efficient scheduling of multiple utterances

The WFST based speech recognition algorithm consists of
two major phases; phase 1 computes emission probability and
phase 2 conducts Viterbi beam search over the WFST net-
work [4]. In GPU based implementations, phase 3 is needed
for moving intermediate search results between the GPU and
the CPU.

A conventional single user time-multiplexed scheduling
processes multiple utterances sequentially as shown in Fig.
2(a). The first input utterance utt[0] arrives the queue at
treq[0] and the recognition engine starts to process it imme-
diately. Note that the request takes the processing time of
tproc[0] to complete the recognition process, and the process-
ing time with a GPU is much shorter than the speech duration
of the utterance. While the recognition engine is occupied by
utt[0], the other utterances such as utt[1] in the queue have
to wait twait[1] as shown in Fig. 2(a). The total processing
time ttot[n] of the request utt[n] is the sum of the wait time
twait[n] and the processing time tproc[n].

The proposed scheduling conducts the multiple speech
recognition simultaneously as shown in Fig. 2(b). We try
to simultaneously conduct the emission probability compu-
tation of multiple utterances that are at the waiting queue.
Thus, utt[1] can be processed as soon as it arrives. In Fig.
2(b), E[0,1] represents the period that computes the emission
probability of utt[0] and utt[1] concurrently. After phase 1 is
finished, the Viterbi search of each utterance is conducted in
a time-multiplexed way because the Viterbi search demands
large overheads in context switching between the utterances
and also consumes a large size of memory. We adopt a double
buffering technique and page-locked memory to minimize the
communication overhead by conducting phase 3 at the back-
ground illustrated in Fig. 2(b). Hence, ttot[0] increases but,
ttot[1] decreases and the overall throughput improves much.

Fig. 3. Beam pruning strategies of the emission probability
computation.

As a result, the request in the waiting queue can be processed
with short delay than conventional speech recognizers. In the
following section, the optimization techniques are presented
with respect to each recognition phase.

2.2. Gaussian parameter sharing in the emission proba-
bility computation

The emission probability computation is the most time con-
suming phase in the LVCSR system, which takes 30-70 per-
cent of the total recognition time [6]. This phase computes
the likelihood for all pairs of feature vectors and Gaussians in
the Gaussian mixture models (GMMs) that are shared among
the HMM states.

For each feature vector ot of dimension D we calculate
the likelihood of each Gaussian j, 1 ≤ j ≤ M in the GMM
k. The total number of GMM is G and these GMMs are used
by the system to model various states of HMMs in the speech
recognition model. If the covariance matrix of Gaussian j is
assumed diagonal, the likelihood computation between GMM
k and feature vector ot can be expressed as:

bk(ot)

=

M∑
j=1

ckj

D∏
d=1

1√
2πσ2

kjd

exp

(
−

1

2

(otd − μkjd)
2

σ2

kjd

)
,

(1)

where μkjd, σkjd and ckj are the mean, variance and weight
of the Gaussian j.

In Eq.(1), the GMM parameters ckj , μkjd and σkjd are
loaded to the shared memory on the GPU at the beginning
of the emission probability computation phase to maximize
data re-useability [7]. In the multi-user case, we gather active
HMM states that share the same GMMs and allocate them in
the same GPU threads block. Therefore every HMM state in
the same GPU threads block can share these Gaussian param-
eters and minimize the number of global DRAM accesses.

Under the beam pruning strategy, we only need to cal-
culate the emission probabilities of active HMM states that
are inside the beam [3, 6, 7]. To indicate activeness of HMM
states, we set flags of the buffer when the HMM state is inside
the beam. This strategy can be extended to the concurrent N
user case easily by adding extra flag buffers for each utter-
ances as shown in Fig. 3(a).

1618

This distributed flag method demands minimum compu-
tation, because it skips out all of the inactive HMM states.
However, this method needs N times more conditional oper-
ations to know the activeness, and it also needs N times more
memory space to save the flags. Note that N is the number of
users serviced at the same recognition server. Moreover, the
conditional branches incur warp divergence that can lead to
significant loss of parallel efficiency [8].

We merge the flag buffers into one global flag buffer as
shown in Fig. 3(b). Every active HMM state in different ut-
terances uses the global flag buffer if those active HMM states
share the same GMM. Therefore some emission probabili-
ties of inactive HMM states are calculated if the HMM states
are active in other utterances. The global flag buffer method
needs some redundant computation but greatly improves the
parallel efficiency by reducing the warp divergence.

2.3. Communication overhead minimization in the Viterbi
beam search

During the Viterbi beam search, the recognition engine needs
to save intermediate search results, such as the list of active
states and the accumulated negative log likelihood of each
state, in the buffer [3, 7]. Therefore, we need an N times
bigger buffer to evaluate N utterances concurrently. How-
ever the GPU has a relatively limited DRAM space, hence
N should be selected carefully considering the size of mem-
ory footprint in the GPU. To minimize the memory footprint,
we add an extra buffer in the host platform (CPU) and move
the intermediate search result between the CPU and the GPU.
However, the communication between the GPU and the CPU
is not fast enough [8].

To minimize the communication overhead between the
CPU and the GPU, a double buffering technique is adopted
using the page-locked memory. The mapped page-locked
host memory guarantees that the operating system will never
page out this memory to the hard disk, which ensures its resi-
dency in the physical memory. Knowing the physical address
of the buffer, the GPU can use the direct memory access
(DMA) to copy data to or from the host very efficiently. Also,
the data transfer operations between the page-locked memory
and the device memory can be performed concurrently with
the GPU kernel execution [8]. For example, we can move
the intermediate search data of utt[1] to the buffer on the
GPU from the CPU when utt[0] is searched with the other
buffer. Using the mapped page-locked memory and the dou-
ble buffering technique, we can hide the communication time
that exchanges the intermediate search data.

3. EXPERIMENTAL RESULTS

3.1. Experiment setup

We use an NVIDIA GTX 580 (Fermi architecture) GPU
which has 30 CUDA cores with an Intel Core i7 980 based

Table 1. Performance summary of the batch speech transcript
simulation.

Baseline Distributed Global

N (# of concurrent processes) 1 3 3

Phase 1 (ms) 17,075.0 24,108.8 14,637.0

Phase 2 (ms) 63,696.5 63,871.3 63,921.9

Phase 3 (ms) 3,337.4 0.0 0.0

Total (s) 84.87 88.61 79.19

Speed up (Phase 1) 1.00× 0.71× 1.17×

Speed up (Total time) 1.00× 0.95× 1.07×

host platform [8].
The acoustic model was trained by HTK, with the Wall

Street Journal(WSJ) 1 corpus and the test was conducted with
WSJ1 5k test and evaluation set which has 330 test utterances.
Each utterance has an average duration of 7.3 sec. The trained
acoustic model contains 3,000 16-mixture Gaussians and 39
dimensional MFCCs are used as feature vectors.

The fully composed WFST network is compiled and op-
timized offline [9]. The network is modified to one-level
step by adopting look-overhead epsilon arcs and transform-
ing epsilon arcs to non-epsilon arcs [4]. The resultant WFST
network consists of 3.9 million states and 14.5 millon non-
epsilon arcs.

The word error rate (WER) is set to 9.53% by adjusting
the search beam width dynamically depending on the num-
ber of active arcs. The baseline GPU-based speech recogni-
tion engine was implemented using the efficient data packing
method as explained in [7]. We use the real time factor (RTF)
as a performance measure, which is computed as the total de-
coding time divided by the input speech duration. Note that
the total decoding time is the the sum of the wait time and the
processing time.

3.2. Performance of the batch speech transcription simu-
lation

As shown in Table 1, the emission probability computation
using the global flag buffer achieved 16.7 % of speed-up im-
provement when N is 3. The distributed flag buffer method
that incurred the warp divergence increased the total recogni-
tion time by 4.4% and the emission probability computation
time by 41.1%. Although the global buffer method demands
more computation, the execution time is much reduced be-
cause of improved parallel efficiency. Also, 4.8% of time is
reduced in the phase 2, 3 by overlapping data transfer and
GPU kernel execution time.

3.3. Performance of the trace driven on-line simulation

The request arrivals are modeled as a Poisson arrival process
with the average rate λ per second. We model this by gener-
ating a set of arrival times for each request from a user. We

1619

Table 2. Performance summary of the trace driven online simulation.
N λ (Average Request Rate per second)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1 42.23(13.7) 85.81(24.4) 121.15(31.3) 281.34(51.4) 434.46(62.0) 1,277.29(82.8) 2,858.76(91.5)

twait(s;%) 2 33.79(10.9) 62.16(17.4) 81.72(20.9) 153.16(30.2) 278.3(43.6) 657.74(60.5) 1,113.26(71.7)

3 33.58(10.8) 57.10(15.8) 70.34(17.7) 121.56(23.3) 233.65(35.7) 522.61(47.9) 884.67(59.9)

1 265.72(86.3) 266.09(75.6) 266.16(68.7) 265.90(48.6) 266.17(38.0) 265.85(17.2) 265.95(8.5)

tproc(s;%) 2 244.08(89.1) 295.89(82.6) 308.59(79.1) 353.34(69.8) 360.15(56.4) 428.48(39.4) 438.51(28.3)

3 277.33(89.2) 303.45(84.2) 328.11(82.4) 399.95(76.7) 419.62(64.3) 568.17(52.1) 591.76(40.1)

1 0.04 0.05 0.06 0.08 0.10 0.24 0.50

Avg. RTF 2 0.04 0.05 0.06 0.07 0.09 0.16 0.24

3 0.04 0.05 0.06 0.07 0.09 0.16 0.23

1 0.14 0.20 0.27 0.50 1.01 1.20 2.38

Max RTF 2 0.11 0.17 0.22 0.38 0.78 0.86 1.46

3 0.11 0.17 0.22 0.34 0.71 0.83 1.29

generate a pseudo random number r uniformly distributed in
the interval [0, 1] and then compute the arrival time of nth
request tarr[n] as follows:

tarr[n] = tarr[n − 1] −
1

λ
log(r). (2)

We generate 10 traces for each average rate that increases
from 1.0 to 7.5 with the step of 0.5. Each trace has 330 user
requests from the test and evaluation set of WSJ1 corpus.

The maximum and average RTF indicate the worst and the
average case recognition speeds respectively. A system does
not meet the real-time performance when the maximum RTF
is bigger than 1 even if the average RTF is smaller than 1. As
shown in Table 2, the maximum RTF of the baseline (N=1) is
1.01 when λ is 3.0 but the maximum RTF decreases notice-
ably when N is 2 or 3. Therefore the developed multi-user
speech recognizers show much better worst case performance
when compared with the single user speech recognition en-
gine. When λ is 3.5 and N is 3, the recognizer is 1.49 time
faster in the average and 1.45 times faster in the worst-case
compared with the baseline.

4. CONCLUDING REMARKS

We have implemented a multi-user speech recognition engine
using an NVIDIA GTX 580 GPU employing a fully com-
posed one-level WFST network. The developed system pro-
cesses multiple users’ utterances simultaneously to reduce the
wait time. We achieve 1.67× speed up in the emission prob-
ability computation by sharing Gaussian parameters among
utterances using the global flag buffer. Also, we adopt a dou-
ble buffering technique with mapped page-locked memory
to minimize the communication overhead by overlapping the
data transfer and GPU kernel execution time. As a result,
we obtained 1.49× in the average and 1.45× in the worst

case speed-up when compared with a system based on a time-
multiplexed single user speech recognition engine on a GPU.

5. REFERENCES

[1] W. Zhang, L. He, Y.-L. Chow, R. Yang, and Y. Su, “The study
on distributed speech recognition system,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2000, pp. 1431–1434.

[2] D. Gross and C. Harris, Fundamentals of queueing theory, Wi-
ley Series in Probability and Statistics, 4th edition, 2008.

[3] K. You, J. Chong, Y. Yi, E. Gonina, C. J. Hughes, Y.-K. Chen,
W. Sung, and K. Keutzer, “Parallel scalability in speech recog-
nition,” IEEE Signal Processing Magazine, vol. 26, no. 6, pp.
124–135, Nov. 2009.

[4] J. Chong, E. Gonina, Y. Yi, and K. Keutzer, “A fully data parallel
WFST-based large vocabulary continuous speech recognition on
a graphics processing unit,” in Proc. Interspeech, Sep. 2009, pp.
1183–1186.

[5] P. R. Dixon, T. Oonishi, and S. Furui, “Fast acoustic compu-
tations using graphics processors,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
Apr. 2009.

[6] P. Květoň and M. Novák, “Accelerating hierarchical acoustic
likelihood computation on graphics processors,” in Proc. Inter-
speech, Sep. 2010.

[7] J. Kim, K. You, and W. Sung, “H- and C-level WFST-based
large vocabulary continuous speech recognition on graphics pro-
cessing units,” in IEEE Internation Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2011, pp. 1733–
1736.

[8] NVIDIA, NVIDIA CUDA Programming Guide Version 4.0, May
2011.

[9] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state trans-
ducers in speech recognition,” Computer Speech and Language,
vol. 16, no. 1, pp. 69–88, 2002.

1620

