
CYCLE-EFFICIENT LINEARY FEEDBACK SHIFT REGISTER IMPLEMENTATION ON
WORD-BASED MICRO-ARCHITECTURE

Jui-Chieh Lin1, Sao-Jie Chen2, and Yu Hen Hu1

1University of Wisconsin, Dept. Electrical and Computer Engineering, Madison, WI 53706 USA
2Graduate Institute of Electronics Engineering, National Taiwan University

ABSTRACT

A novel algorithm transformation method, called term-preserving
look-ahead transformation (TePLAT) is proposed to transform the
bit-serial linear feedback shift register (LFSR) algorithm into a bit-
parallel formulation which promises order of magnitudes
improvement of execution speed compared to the traditional look-
ahead algorithm transformation approach. TePLAT is applied to
26 commonly used LFSRs and tested on two popular word-based
micro-processor development platforms: a Texas Instrument
C6416 Code Composition Simulator and an ARM-9 Simulator. In
all 26 cases, TePLAT transformed implementations consistently
deliver much higher throughput than those implementations based
on traditional look-ahead algorithm transformation.

Index Terms— Linear feedback shift register, iteration bound,
vector processing, look ahead transformation, scrambler

1. INTRODUCTION

The linear feedback shift register (LFSR) algorithms have
found wide applications in wireless communication, including
scrambling, error correction coding, encryption, testing, and
random number generation [4], [5], [6], [7]. Hence, increasing
throughput of the LFSR implementation will have profound impact
on accelerating the overall execution speed of many embedded
applications, in particular, software defined radio (SDR) [1], [3].

In this work, cycle-efficient implementation of a total of 22
LFSRs [19], [20], [21] on a word-based micro-architecture
platform is considered. The LFSR’s output is determined solely by
its initial condition without any external input. It is commonly
specified by a generator polynomial over the Galois Field GF(2).
The generator polynomial leads to a bit-serial algorithm
formulation of the LFSR algorithm where each variable is a binary
bit. An LFSR can also be modeled as a finite state machine with no
external input.

Since LFSR is a bit-serial algorithm, it is inefficient
implementing on a word based micro-architecture. To address this
problem, one approach would be to implement a LFSR using
special purpose hardware [2], [8], [9] which may interface with the
host micro-processor via instruction set extensions or interrupt.
However, dedicated hardware module is less flexible for
applications such as a SDR.

A second approach seeks to reformulate the LFSR algorithm so
that inherent bit-level parallelism afforded by a word-based micro-
architecture may be fully exploited [11], [12], [13]. Since a word
may be regarded as a vector of binary bits, traditional vectorized
compilation techniques such as loop-unrolling [10] becomes a

natural choice for this purpose. However, the recursive formulation
of the LFSR algorithm imposes a fundamental limitation, known as
the iteration bound [10] on the amount of parallelism that may be
exploited using loop unrolling.

Fortunately, a look-ahead transformation (LAT) [10] promises
to resolve this difficulty. By substituting the recursive expression
of the next iteration into the present iteration, LAT yields new
recursion formula that often has a smaller iteration bound.
However, LAT comes with a side effect: It often introduces
additional operations. In terms of LFSR, this implies the LAT-
transformed LFSR formulation may contain many more terms [14]
than the original LFSR. Since each term will require additional
instruction to execute, the potential benefit of execution cycle
reduction due to LAT and unrolling may often be compromised by
these extra operations.

In [15], it has been shown that if the generator polynomial has
the form of X[n] = X[n–a] X[n–b], then a special look-ahead
transformation may be applied that preserve the number of terms
in the transformed formula and hence will not cause any overhead
due to LAT. In this work, this preliminary result is generalized to
arbitrary generator polynomials and is called the term-preserving
look-ahead transformation (TePLAT). As promised by its name,
when TePLAT is applied to a given LFSR generator polynomial, it
is guaranteed that number of terms of the transformed generator
polynomial will remain unchanged. This term-preserving property
makes it feasible to apply TePLAT aggressively to achieve
maximum throughput rate with respect to a particular micro-
architecture.

To evaluate the performance of the TePLAT algorithm, 25
LFSRs appeared in state of art communication standards have been
implemented in two popular microprocessor development
platforms: (i) Texas Instruments C6416 Code Composition
Simulator [16] and (ii) the ARM-9 Simulator [17]. It is pleasantly
confirmed that the speed up factors of TePLAT over existing
methods range from 1.5 to 18 depending on the structure of the
generator polynomials.

2. PRELIMINARIES

2.1 LFSR and Generator Polynomials
A LFSR can be specified by its generator polynomial over a

Galois field GF(2):
 P(x) = 1 + c1x + c2x

2 + c3x
3 + … + cnx

n (1)
where “+” represents exclusive-or (XOR) operations. The length of
the LFSR, n, is generally the degree of the generator polynomial.
A LFSR output a periodic, pseudo-random sequence of length
2

n
−1 when P(x) is a primitive polynomial. A LFSR corresponds to

1613978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

a n-state finite state machine (FSM) whose state diagram has two
disjoint parts: one consists of a single state of all 0s, and the other
is a ring of remaining states. The output of the LFSR is represented
by the states in this ring.

2.2 Loop-Unrolling
Loop-unrolling (a.k.a loop unfolding) [10] consolidates loop

bodies of consecutive iterations into a single iteration to expose
inherent parallelism. However, loop unrolling cannot achieve
arbitrary level of parallelism. An inter-iteration data dependence
imposes an upper bound on how many times a loop can be
unrolled to explore the inherent inter-iteration parallelism.
Theoretically, this kind of inter-iteration dependence relation is
characterized by a notion called iteration bound [10].

In [11] and [15], loop unrolling is applied to achieve 3-fold
speed-up for the scrambler in Wifi. Due to the iteration bound, no
further loop unrolling is applied. The iteration bound is also named
as first-block and truncated window in [12] and [13] respectively.

[0]

11

01 10

00
[1] [0]

[1]

Fig. 1. State diagram of a LFSR in example 1

2.3 Look-Ahead Transformations
The iteration bound can be reduced using a look-ahead
transformation (LAT) [10]. LAT can be best illustrated with an
example. Consider a general LFSR equation (mk < mk+1):
 x[n] = x[n−m1] x[n−m2] x[n−mM] (2)
The iteration bound in this case is XOR/m1 where XOR is the
execution time (clock cycles) per XOR operation. Now consider
the same equation at an earlier iteration:
 x[n m1] = x[n 2m1] x[n m1 m2] … x[n m1 mM] (3)
Substituting (3) into (2), one has
x[n] = {x[n 2m1] x[n m2] … x[n mM]}
 {x[n m1 m2] … x[n m1 mM]} (4)
In (4), the new iteration bound is
 XOR/min.{2m1, m2} < XOR/m1.
Thus, more unrolling may be applied to exploit more bit-level
parallelism to speed-up execution.

However, LAT comes at a cost. Referring to (4), in general, it
may contain more terms than the original recursion in (2). As such,
although more bits may be processed per instruction, there will be
more instructions to be executed due to the LAT induced overhead.
Take scrambler for Wimax as an example, the original generator
polynomial is 1+x14+x15 and the LAT generator polynomial is 1+
x15+x28+x29. The vectorized, unrolled implementation is:
 X[n:n+13] = X[n 14:n-1] ^ X[n 15:n-2];
and the LAT version is:
 X[n:n+14] = X[n 15:n-1] ^ X[n 28:n-14] ^ X[n 29:n-15];
The length of parallel bit vector increases negligibly from 14-bit to
15-bit and cannot compensate the cost of one additional term after
applying LAT. The throughput reduced by 10% as shown in Table
1 and Table 2. Hence blindly applying LAT does not necessarily

contribute to improving throughput rate of implementing the LFSR
algorithm.

3. TERM-PRESERVING LOOK-AHEAD
TRANSFORMATION

In previous section, it is shown that while LAT promises to
reduce iteration bound, it also introduces computation overhead
that threatens to nullify any potential performance gain. In this
section, an alternative look-ahead transformation for the LFSR
algorithm will be developed.
Property 1. Term Preserving Property – Denote

2

2 2

0 0

K K
m k

m k
m k

Q x q x P x p x (5)

then 2 ;
0 otherwise.

k
m

p m k
q (6)

In other words, although Q(x) is a polynomial of twice the order of
P(x), both of them have the same number of terms.
Definition 1. Term-Preserving Look-Ahead Transform (TePLAT)
– A TePLAT of a LFSR with a generator polynomial P(x) is a
LFSR with a generator polynomial Q(x) = [P(x)]2.
Example 1. Consider the LFSR with recursive equation:
 X[n] = X[n 1] X[n 2]. (7)
After applying the TePLAT once, the transformed recursive
equation becomes:
 X[n] = X[n 2] X[n 4]. (8)

These two LFSRs are depicted in Fig. 2. The original iteration
bound in (7) is XOR, and that of the transformed LFSR in (8) is

XOR/2. Hence, the throughput may be doubled after applying loop
unrolling to eq. (8).

S4 S3 S2 S1

S2 S1

S0

S0

(a)

(b)

Fig. 2. (a) Original LFSR. (b) LFSR after TePLAT.

3.1 Equivalence of Transformed LFSR
A LFSR generates a periodic binary sequence. Each period of

this sequence, denoted by S(P(x)) is dictated by the corresponding
generator polynomial P(x). Traditional LAT can be interpreted as
converting the LFSR with a generator polynomial P(x) into a new
LFSR with another generator polynomial
 Q(x) = P(x) (1+xk*) (9)
where k* = min. {k; 1 ≤ k ≤ K, pk = 1}. Then, according to a
theorem presented in [18], the following property holds:
Property 2. (Theorem 6.53 in [18]) Let S(P(x)), and S(Q(x)) be
the linear recurrent sequences generated using generator
polynomials P(x), and Q(x) respectively, and g(x) is another
polynomial in GF(2), then
 S(P(x)) S(Q(x)) if and only if Q(x) = P(x) g(x) (9)
In other words, the binary sequence of the original LFSR is a
subset of all the binary sequences that may be generated by a LAT
transformed LFSR.

1614

1101

0110 1011

[1] [1]

[0]

0111
[0]

[1]

[1]

[1]

[1]

[0]

1110

1111

11000011

1001

1000
[0]

[0]

[0]

[1]

[0]

[1]

0010

0001

01010100

1010

[0]
0000

Fig. 3. State diagram for degree-1 TePLAT LFSR

To illustrate, consider the state diagram of the LFSR specified in
(7) as shown in Fig. 1. It contains two independent cycles. The
maximal length sequence that may be generated by this LFSR is
011 which may be obtained if the LFSR is initialized to 01, 10, or
11. Otherwise, the LFSR will be trapped into the unused state of
00.
The state diagram of the TePLAT transformed LFSR is shown in
Fig. 3. Note that there are now four independent cycles in this state
diagram. Moreover, the set of binary sequences of the original
LFSR, {0} and {011}, are a proper subset of the binary sequences
generated by the TePLAT transformed LFSR, namely, {0}, {011},
{001111}, and {010001}. The sequence sets in Fig. 3 can be
obtained by exhaust all possibilities of initial vectors {0000} to
{1111}. Interested reader may refer to Example 6.18 and Theorem
6.63 in [18] for the method and the characteristics of TePLAT
sequence sets. Note these diagrams are only for illustration; real
implementation does not require exhausting the states.
In order for the TePLAT transformed LFSR to generate an
identical binary sequence as the original LFSR, the initial state
must be set to one of the three states {1101, 1011, 0110}. Note that
these three feasible initial states are direct concatenation of
successive output bits of the original LFSR. This example further
points to a method to initialize the TePLAT transformed LFSR to
ensure it to generate an identical binary sequence as original
LFSR.

3.2 Complexity Analysis and Execution Overhead
We categorize the coeds into three parts: data alignment,

iteration overhead and arithmetic operations. Fig. 4 shows the
histogram of performing the LFSR—P(x) = 1 + x3 + x16 on TI-
C6416. The horizontal axis represents the logarithm of look-ahead
factor log2 F such that Q(x) = [P(x)]F. The vertical axis depicts the
number of cycle required for generating 768 bits. The curve
appears to be an inverse power of look-ahead factor for F <24. The
cycle number drops below the inverse power curve and reaches the

bottom when both terms in P(x) = 1 + x3 + x16 align at word
boundaries for F=25. However, the performance enhancement is
compensated due to the longer chains induced by TePLAT.

5 SIMULATION RESULTS

5.1 Experimental Setup
We believe that the cycle-accurate simulator can profile

convincible outcome for demonstrating our algorithm. Therefore,
we adopt Texas Instruments© Inc. Code Composer Studio (CCS)
and Advanced RISC Machines© Ltd. Instruction Set Simulator
(ARMulator). In this work, we build an in-house source-to-source
compiler that generates LFSR codes with TePLAT factors ranging
from 20 to 28. We then run the generated codes on the
corresponding simulators and determine the best TePLAT factor
for the LFSR. We call the procedure exhaustive method, and the
best performance look-ahead transformed LFSR found based on
the experiments is termed as “best” in the following results.

5.2 Throughput Performance Evaluation
We chose two popular and representative processors for mobile

devices, TI-C6416 digital signal processor and ARM-926 general
purpose processor. We put the results into two separate tables,
where significant improvement can be observed. Comparisons of
the optimization techniques are provided in Figs. 5 and 6.

Throughput numbers are given for all the LFSRs. The
conventional LFSRs are similar to [12][13] that applied loop-
unrolling (LU) technique. The best look-ahead transformed
LFSR’s improvement depends on the LFSR generator polynomial
and the processor architecture. Our experimental results show that
the best LFSR can usually be found by TePLAT factor ranging
from 20 to 28. The best look-ahead transformed LFSRs can perform
at most 18X to 50% faster. A star (*) is used to indicate the

Fig. 4. TePLAT of LFSR:P(x) = 1 + x3 + x16 cycle histogram.

Fig. 5. Comparison of algorithm on TI C6416 architecture
(normalized to unrolled version).

Fig. 6. Comparison of algorithm on ARM926 architecture
(normalized to loop-unrolled version).

1615

maximum-level TePLAT is applied. In [8], the bit manipulation
unit (BMU) hardware was proposed and implemented on XLINX
VirtexII. The throughput of Wifi scrambler in [8] was 0.6 bit/cycle.
However, our work can achieve 0.7 bit/cycle on ARM and
2.9bit/cycle on TI. The authors also note that some LFSRs were
designed for efficient implementation such as Grain stream cipher
[23]. Our TePLAT method has negligible improvement with such
LFSR.

6 CONCLUSION AND FUTURE WORKS

In this paper, we proposed a term preserving look-ahead
transformation (TePLAT) to achieve bit-level parallelism in LFSR.
Compared to the conventional look-ahead transformation (LAT),
this method does not introduce additional terms in the formula and
therefore owns the same complexity as the original LFSR formula.
The method is used to implement arbitrary-input LFSR and
scrambler on word–based processors. The correctness on the
implemented LFSR with arbitrary number of input and its look-
ahead factor is proved. The paper also provided abundant
simulations results on 25 popular LFSRs and scramblers in wide-
spread communication standards. This method adjusts parameter
based on the platform and performs well on ARM and TI
platforms, that is, this algorithm transformation method will be
applicable to various platforms.

11. REFERENCES
[1] J. Mitola III, Cognitive Radio Architecture, John Wiley &

Sons, Inc., 2006.
[2] J. Glossner, D. Iancu, J. Lu, E. Hokenek, and M. Moudgill,

"A software-defined communications baseband design," in
IEEE Communication Magazine, vol. 41, no. 1, pp. 120–128,
Jan. 2003.

[3] H. Lee and T. Mudge, “A Dual-Processor Solution for the
MAC Layer of a Software Defined Radio Terminal,” in Proc.
of the 2005 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASE
2005), no. 7, pp. 257-265, Sept. 2005.

[4] IEEE Std. 802.11–2007, Part 11: “Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
Specifications,” IEEE Std. 802.11, 2007.

[5] G. C. Ahlquist, M. Rice, and B. Nelson, “Error Control
Coding in Software Radios: An FPGA Approach,” in Proc. of
the IEEE Personal Communications, vol. 6, no. 4, pp. 35-39,
Aug. 1999.

[6] V. Sriram and D. Kearney, ”An FPGA Implementation of a
Parallelized MT19937 Uniform Random Number Generator,”
EURASIP Journal on Embedded Systems, vol. 2009, no. 7,
pp. 1-6, 2009.

[7] K. K. Saluja and C.-F. See, "An Efficient Signature
Computation Method," IEEE Design and Test of Computers,
vol. 9, no. 4, pp. 22-26, Oct. 1992.

[8] S. H. Jeong, M. H. Sunwoo, and S. K. Oh, “Bit Manipulation
Accelerator for Communication Systems Digital Signal
Processor,” in Journal on Applied Signal Processing
(EURASIP), vol. 2005, no. 16, pp. 2655–2663, 2005.

[9] M. Wei, M. Snir, J. Torrellas, and R. B. Tremaine, “A Near-
Memory Processor for Vector, Streaming and Bit
Manipulation Workloads,” in Proc. of the Second Watson

Conference on Interaction between Architecture, Circuits, and
Compilers (P=AC2), Sept. 2005.

[10] K. K. Parhi, VLSI Digital Signal Processing Systems Design
and Implementation, John Wiley and Sons, Inc., 1999.

[11] Y. Tang, L. Qian, and Y. Wang, “Optimized Software
Implementation of a Full–Rate IEEE 802.11a Compliant
Digital Baseband Transmitter on a Digital Signal Processor,”
in Proc. of the IEEE Global Communication (GLOBECOM
2005), vol. 4, pp. 2194–2198, Nov. 2005.

[12] S. Chowdhury and S. Maitra, “Efficient Software
Implementation of Linear Feedback Shift Registers,” in Proc.
of the International Conference on Cryptology in India
(INDOCRYPT 2001), Lecture Notes in Computer Science
(LCNS), Springer-Verlag, vol. 2247, pp. 297-307, Dec. 2001.

[13] C. Lauradoux, “From Hardware to Software Synthesis of
Linear Feedback Shift Registers,” in Proc. of the 21st IEEE
International Parallel and Distributed Processing Symp.
(IPDPS 2007), pp. 453-460, Mar. 2007.

[14] S. Sriram and V. Sundararajan,” Efficient Pseudo-Noise
Sequence Generation for Spread-Spectrum Applications”
Workshop on Signal Processing Systems (SIPS 2002), pp. 80-
86, Oct. 2002.

[15] J. Lin, M. Fan-Chiang., M. Hsieh, S. Mao, S. Chen, and Y.
Hu, “Cycle Efficient Scrambler Implementation for Software
Defined Radio,” in Proc. of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2010), pp.
1586-1589, Mar. 2010.

[16] Texas Instruments, “Code Composer Studio Development
Tools v3.3 Getting Started Guide,” SPRU509H, May 2008.

[17] ARM Limited, “Realview ARMulator ISS User Guide
v1.4.3,” ARM DUI 0207D, Mar. 2007.

[18] R. Lidl and H. Niederreiter, Introduction to Finite Fields and
Their Applications, revised ed., Cambridge Univ. Press, 1994.

[19] R. S. Katti, X. Ruan, and H. Khattri, “Multiple-Output Low-
Power Linear Feedback Shift Register Design,” IEEE
Transaction on Circuits and System I: Regular Papers, vol.53,
no.7, pp. 1487-1495, Jul. 2006.

[20] IEEE Std. 802.16e-2005, Amendment to IEEE Standard for
Local and Metropolitan Area Networks - Part 16: “Air
Interface for Fixed Broadband Wireless Access Systems -
Physical and Medium Access Control Layers for Combined
Fixed and Mobile Operation in Licensed Bands,” IEEE Std.
8021.16, Feb. 2006.

[21] 3GPP TS 36.212 v8.4.0, “Multiplexing and Channel Coding,”
Sept. 2008.

[22] F. Didier and L. Yann, “Finding Low-Weight Polynomial
Multiples Using Discrete Logarithm,” IEEE International
Symposium on Information Theory (ISIS 2007), pp. 1036-1040,
Jun. 2007.

[23] M. Hell, T. Johansson and W. Meier, “Grain – A Stream Cipher for
Constrained Environment,” International Journal of Wireless and
Mobile Computing, vol. 2, no. 1, pp. 86-93, May 2007.

1616

