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ABSTRACT 
 
A novel algorithm transformation method, called term-preserving 
look-ahead transformation (TePLAT) is proposed to transform the 
bit-serial linear feedback shift register (LFSR) algorithm into a bit-
parallel formulation which promises order of magnitudes 
improvement of execution speed compared to the traditional look-
ahead algorithm transformation approach.  TePLAT is applied to 
26 commonly used LFSRs and tested on two popular word-based 
micro-processor development platforms: a Texas Instrument 
C6416 Code Composition Simulator and an ARM-9 Simulator.  In 
all 26 cases, TePLAT transformed implementations consistently 
deliver much higher throughput than those implementations based 
on traditional look-ahead algorithm transformation. 
 
Index Terms— Linear feedback shift register, iteration bound, 
vector processing, look ahead transformation, scrambler 

1. INTRODUCTION 

The linear feedback shift register (LFSR) algorithms have 
found wide applications in wireless communication, including 
scrambling, error correction coding, encryption, testing, and 
random number generation [4], [5], [6], [7]. Hence, increasing 
throughput of the LFSR implementation will have profound impact 
on accelerating the overall execution speed of many embedded 
applications, in particular, software defined radio (SDR) [1], [3].  

In this work, cycle-efficient implementation of a total of 22 
LFSRs [19], [20], [21] on a word-based micro-architecture 
platform is considered. The LFSR’s output is determined solely by 
its initial condition without any external input. It is commonly 
specified by a generator polynomial over the Galois Field GF(2). 
The generator polynomial leads to a bit-serial algorithm 
formulation of the LFSR algorithm where each variable is a binary 
bit. An LFSR can also be modeled as a finite state machine with no 
external input.  

Since LFSR is a bit-serial algorithm, it is inefficient 
implementing on a word based micro-architecture. To address this 
problem, one approach would be to implement a LFSR using 
special purpose hardware [2], [8], [9] which may interface with the 
host micro-processor via instruction set extensions or interrupt. 
However, dedicated hardware module is less flexible for 
applications such as a SDR.   

A second approach seeks to reformulate the LFSR algorithm so 
that inherent bit-level parallelism afforded by a word-based micro-
architecture may be fully exploited [11], [12], [13]. Since a word 
may be regarded as a vector of binary bits, traditional vectorized 
compilation techniques such as loop-unrolling [10] becomes a 

natural choice for this purpose. However, the recursive formulation 
of the LFSR algorithm imposes a fundamental limitation, known as 
the iteration bound [10] on the amount of parallelism that may be 
exploited using loop unrolling.  

Fortunately, a look-ahead transformation (LAT) [10] promises 
to resolve this difficulty. By substituting the recursive expression 
of the next iteration into the present iteration, LAT yields new 
recursion formula that often has a smaller iteration bound. 
However, LAT comes with a side effect: It often introduces 
additional operations. In terms of LFSR, this implies the LAT-
transformed LFSR formulation may contain many more terms [14] 
than the original LFSR. Since each term will require additional 
instruction to execute, the potential benefit of execution cycle 
reduction due to LAT and unrolling may often be compromised by 
these extra operations.  

In [15], it has been shown that if the generator polynomial has 
the form of X[n] = X[n–a]  X[n–b], then a special look-ahead 
transformation may be applied that preserve the number of terms 
in the transformed formula and hence will not cause any overhead 
due to LAT. In this work, this preliminary result is generalized to 
arbitrary generator polynomials and is called the term-preserving 
look-ahead transformation (TePLAT). As promised by its name, 
when TePLAT is applied to a given LFSR generator polynomial, it 
is guaranteed that number of terms of the transformed generator 
polynomial will remain unchanged. This term-preserving property 
makes it feasible to apply TePLAT aggressively to achieve 
maximum throughput rate with respect to a particular micro-
architecture.  

To evaluate the performance of the TePLAT algorithm, 25 
LFSRs appeared in state of art communication standards have been 
implemented in two popular microprocessor development 
platforms: (i) Texas Instruments C6416 Code Composition 
Simulator [16] and (ii) the ARM-9 Simulator [17]. It is pleasantly 
confirmed that the speed up factors of TePLAT over existing 
methods range from 1.5 to 18 depending on the structure of the 
generator polynomials.  

2. PRELIMINARIES 

2.1 LFSR and Generator Polynomials 
A LFSR can be specified by its generator polynomial over a 

Galois field GF(2): 
  P(x) = 1 + c1x + c2x

2 + c3x
3 + … + cnx

n (1) 
where “+” represents exclusive-or (XOR) operations. The length of 
the LFSR, n, is generally the degree of the generator polynomial. 
A LFSR output a periodic, pseudo-random sequence of length 
2

n
−1 when P(x) is a primitive polynomial. A LFSR corresponds to 
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a n-state finite state machine (FSM) whose state diagram has two 
disjoint parts: one consists of a single state of all 0s, and the other 
is a ring of remaining states. The output of the LFSR is represented 
by the states in this ring. 

2.2 Loop-Unrolling 
Loop-unrolling (a.k.a loop unfolding) [10] consolidates loop 

bodies of consecutive iterations into a single iteration to expose 
inherent parallelism. However, loop unrolling cannot achieve 
arbitrary level of parallelism. An inter-iteration data dependence 
imposes an upper bound on how many times a loop can be 
unrolled to explore the inherent inter-iteration parallelism. 
Theoretically, this kind of inter-iteration dependence relation is 
characterized by a notion called iteration bound [10]. 

In [11] and [15], loop unrolling is applied to achieve 3-fold 
speed-up for the scrambler in Wifi. Due to the iteration bound, no 
further loop unrolling is applied. The iteration bound is also named 
as first-block and truncated window in [12] and [13] respectively.  
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Fig. 1. State diagram of a LFSR in example 1 

2.3 Look-Ahead Transformations 
The iteration bound can be reduced using a look-ahead 
transformation (LAT) [10]. LAT can be best illustrated with an 
example. Consider a general LFSR equation (mk < mk+1): 
  x[n] = x[n−m1]  x[n−m2]     x[n−mM] (2) 
The iteration bound in this case is XOR/m1 where XOR is the 
execution time (clock cycles) per XOR operation. Now consider 
the same equation at an earlier iteration: 
 x[n m1] = x[n 2m1] x[n m1 m2] … x[n m1 mM] (3) 
Substituting (3) into (2), one has 
x[n] = {x[n 2m1]  x[n  m2]  … x[n  mM]}  
  {x[n  m1 m2]  … x[n  m1 mM]} (4) 
In (4), the new iteration bound is  
  XOR/min.{2m1, m2} < XOR/m1. 
Thus, more unrolling may be applied to exploit more bit-level 
parallelism to speed-up execution.   

However, LAT comes at a cost. Referring to (4), in general, it 
may contain more terms than the original recursion in (2). As such, 
although more bits may be processed per instruction, there will be 
more instructions to be executed due to the LAT induced overhead. 
Take scrambler for Wimax as an example, the original generator 
polynomial is 1+x14+x15 and the LAT generator polynomial is 1+ 
x15+x28+x29. The vectorized, unrolled implementation is: 
  X[n:n+13] = X[n 14:n-1] ^ X[n 15:n-2]; 
and the LAT version is: 
 X[n:n+14] = X[n 15:n-1] ^ X[n 28:n-14] ^ X[n 29:n-15]; 
The length of parallel bit vector increases negligibly from 14-bit to 
15-bit and cannot compensate the cost of one additional term after 
applying LAT.  The throughput reduced by 10% as shown in Table 
1 and Table 2. Hence blindly applying LAT does not necessarily 

contribute to improving throughput rate of implementing the LFSR 
algorithm. 

3. TERM-PRESERVING LOOK-AHEAD 
TRANSFORMATION 

In previous section, it is shown that while LAT promises to 
reduce iteration bound, it also introduces computation overhead 
that threatens to nullify any potential performance gain. In this 
section, an alternative look-ahead transformation for the LFSR 
algorithm will be developed. 
Property 1. Term Preserving Property – Denote  

  
2

2 2

0 0

K K
m k

m k
m k

Q x q x P x p x  (5) 

then  2 ;
0 otherwise.

k
m

p m k
q  (6) 

In other words, although Q(x) is a polynomial of twice the order of 
P(x), both of them have the same number of terms. 
Definition 1. Term-Preserving Look-Ahead Transform (TePLAT)  
– A TePLAT  of  a LFSR with a generator polynomial P(x) is a 
LFSR with a generator polynomial Q(x) = [P(x)]2.  
Example 1. Consider the LFSR with recursive equation:   
  X[n] = X[n 1]  X[n 2]. (7) 
After applying the TePLAT once, the transformed recursive 
equation becomes: 
  X[n] = X[n 2]  X[n 4]. (8) 

These two LFSRs are depicted in Fig. 2. The original iteration 
bound in (7) is XOR, and that of the transformed LFSR in (8) is 

XOR/2. Hence, the throughput may be doubled after applying loop 
unrolling to eq. (8).  
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Fig. 2. (a) Original LFSR. (b) LFSR after TePLAT. 

3.1 Equivalence of Transformed LFSR 
A LFSR generates a periodic binary sequence. Each period of 

this sequence, denoted by S(P(x)) is dictated by the corresponding 
generator polynomial P(x). Traditional LAT can be interpreted as 
converting the LFSR with a generator polynomial P(x) into a new 
LFSR with another generator polynomial  
  Q(x) = P(x) (1+xk*) (9) 
where k* = min. {k; 1 ≤ k ≤ K, pk = 1}. Then, according to a 
theorem presented in [18], the following property holds: 
Property 2. (Theorem 6.53 in [18]) Let S(P(x)), and S(Q(x)) be 
the linear recurrent sequences generated using generator 
polynomials P(x), and Q(x) respectively, and g(x) is another 
polynomial in GF(2), then  
  S(P(x))  S(Q(x)) if and only if Q(x) = P(x) g(x) (9) 
In other words, the binary sequence of the original LFSR is a 
subset of all the binary sequences that may be generated by a LAT 
transformed LFSR. 
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Fig. 3. State diagram for degree-1 TePLAT LFSR 

 
To illustrate, consider the state diagram of the LFSR specified in 
(7) as shown in Fig. 1. It contains two independent cycles. The 
maximal length sequence that may be generated by this LFSR is 
011 which may be obtained if the LFSR is initialized to 01, 10, or 
11. Otherwise, the LFSR will be trapped into the unused state of 
00.   
The state diagram of the TePLAT transformed LFSR is shown in 
Fig. 3. Note that there are now four independent cycles in this state 
diagram. Moreover, the set of binary sequences of the original 
LFSR, {0} and {011}, are a proper subset of the binary sequences 
generated by the TePLAT transformed LFSR, namely, {0}, {011}, 
{001111}, and {010001}. The sequence sets in Fig. 3 can be 
obtained by exhaust all possibilities of initial vectors {0000} to 
{1111}. Interested reader may refer to Example 6.18 and Theorem 
6.63 in [18] for the method and the characteristics of TePLAT 
sequence sets. Note these diagrams are only for illustration; real 
implementation does not require exhausting the states. 
In order for the TePLAT transformed LFSR to generate an 
identical binary sequence as the original LFSR, the initial state 
must be set to one of the three states {1101, 1011, 0110}. Note that 
these three feasible initial states are direct concatenation of 
successive output bits of the original LFSR. This example further 
points to a method to initialize the TePLAT transformed LFSR to 
ensure it to generate an identical binary sequence as original 
LFSR.  

3.2 Complexity Analysis and Execution Overhead 
We categorize the coeds into three parts: data alignment, 

iteration overhead and arithmetic operations. Fig. 4 shows the 
histogram of performing the LFSR—P(x) = 1 + x3 + x16 on TI-
C6416. The horizontal axis represents the logarithm of look-ahead 
factor log2 F such that Q(x) = [P(x)]F. The vertical axis depicts the 
number of cycle required for generating 768 bits. The curve 
appears to be an inverse power of look-ahead factor for F <24. The 
cycle number drops below the inverse power curve and reaches the 

bottom when both terms in P(x) = 1 + x3 + x16 align at word 
boundaries for F=25. However, the performance enhancement is 
compensated due to the longer chains induced by TePLAT.  

5   SIMULATION RESULTS

5.1 Experimental Setup 
We believe that the cycle-accurate simulator can profile 

convincible outcome for demonstrating our algorithm. Therefore, 
we adopt Texas Instruments© Inc. Code Composer Studio (CCS) 
and Advanced RISC Machines© Ltd. Instruction Set Simulator 
(ARMulator). In this work, we build an in-house source-to-source 
compiler that generates LFSR codes with TePLAT factors ranging 
from 20 to 28. We then run the generated codes on the 
corresponding simulators and determine the best TePLAT factor 
for the LFSR. We call the procedure exhaustive method, and the 
best performance look-ahead transformed LFSR found based on 
the experiments is termed as “best” in the following results. 

5.2 Throughput Performance Evaluation 
We chose two popular and representative processors for mobile 

devices, TI-C6416 digital signal processor and ARM-926 general 
purpose processor.  We put the results into two separate tables, 
where significant improvement can be observed. Comparisons of 
the optimization techniques are provided in Figs. 5 and 6. 

Throughput numbers are given for all the LFSRs. The 
conventional LFSRs are similar to [12][13] that applied loop-
unrolling (LU) technique. The best look-ahead transformed 
LFSR’s improvement depends on the LFSR generator polynomial 
and the processor architecture. Our experimental results show that 
the best LFSR can usually be found by TePLAT factor ranging 
from 20 to 28. The best look-ahead transformed LFSRs can perform 
at most 18X to 50% faster. A star (*) is used to indicate the 

 
Fig. 4. TePLAT of LFSR:P(x) = 1 + x3 + x16 cycle histogram. 

Fig. 5. Comparison of algorithm on TI C6416 architecture 
(normalized to unrolled version). 

Fig. 6. Comparison of algorithm on ARM926 architecture 
(normalized to loop-unrolled version). 
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maximum-level TePLAT is applied. In [8], the bit manipulation 
unit (BMU) hardware was proposed and implemented on XLINX 
VirtexII. The throughput of Wifi scrambler in [8] was 0.6 bit/cycle. 
However, our work can achieve 0.7 bit/cycle on ARM and 
2.9bit/cycle on TI. The authors also note that some LFSRs were 
designed for efficient implementation such as Grain stream cipher 
[23]. Our TePLAT method has negligible improvement with such 
LFSR. 

6   CONCLUSION AND FUTURE WORKS 

In this paper, we proposed a term preserving look-ahead 
transformation (TePLAT) to achieve bit-level parallelism in LFSR. 
Compared to the conventional look-ahead transformation (LAT), 
this method does not introduce additional terms in the formula and 
therefore owns the same complexity as the original LFSR formula. 
The method is used to implement arbitrary-input LFSR and 
scrambler on word–based processors. The correctness on the 
implemented LFSR with arbitrary number of input and its look-
ahead factor is proved. The paper also provided abundant 
simulations results on 25 popular LFSRs and scramblers in wide-
spread communication standards. This method adjusts parameter 
based on the platform and performs well on ARM and TI 
platforms, that is, this algorithm transformation method will be 
applicable to various platforms. 
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