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ABSTRACT 
1 
This paper presents a new optimization method to reduce the 
hardware complexity of syndrome calculation in strong BCH 
decoding. All the operations required in the parallel 
syndrome calculation are reformulated as a single matrix 
computation to enlarge the search area for common sub-
expressions. The computational complexity of syndrome 
calculation is significantly reduced by finding and sharing 
common terms in the single matrix computation. 
Implementation results show that the proposed architecture 
saves 55% of area overheads compared to the conventional 
structure. 
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1. INTRODUCTION 
 
Error-correction codes are widely used in communication 
systems to recover multiple errors caused by poor 
environment. The Bose-Chaudhuri-Hochquenghem (BCH) 
code is one of algebraic codes, and it has been commonly 
applied to real-time systems because of its powerful error 
correction capability [1]. Moreover, recent applications such 
as advanced solid-state storage systems [2] and high-speed 
optical fiber communications [3] require high decoding 
throughput as well as large error-correction capability. Thus, 
massive-parallel BCH decoding is desired to satisfy such a 
high-throughput requirement, but the hardware overhead 
resulting from the high parallel factor is increased 
significantly. Therefore, a strong BCH decoder demands a 
structure that is efficient enough to lower the hardware 
complexity.  

A BCH codeword is usually decoded by passing 
through three stages: i) syndrome calculation (SC) for the 
received polynomial R(z); ii) generation of an error-locator 
polynomial Λ(z); and iii) finding error positions by applying 
the Chien search (CS). In general, the SC and CS blocks are 
complicated if they are implemented with a large parallel 
factor, and the parallel SC stage takes almost 30% of the 
whole decoder area [4]. While many advanced optimization 
schemes have been developed for the Chien search [5]-[7], 
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only a few works have been reported to reduce the 
complexity of a massive-parallel SC block.  

In the conventional optimization, the constant GF 
multiplier in a parallel SC block is formulated as a matrix 
multiplication and then common sub-expressions (CSEs) are 
shared to reduce redundant nodes. The iterative matching 
algorithm (IMA) [8] is commonly used to find CSEs from a 
matrix. A more advanced scheme was reported in [9], where 
even-indexed syndromes are generated by applying power 
operations to odd-indexed syndromes. As this approach 
needs to compute only the odd-indexed syndromes directly, 
it eliminates a half of registers required to store intermediate 
data. Moreover, the search space for CSEs is enlarged by 
grouping power operations associated with the same input. 
As there are more-than-one matrices and each matrix is 
processed separately in finding CSEs, however, the 
approach cannot find CSEs that may be resident between 
different matrices. 

To enlarge the search space for CSEs, the proposed 
method transforms all the operations of parallel SC into a 
single matrix multiplication. As a result, the proposed 
method maximizes CSEs and reduces the complexity of 
parallel SC significantly. 

 
2. PREVIOUS SYNDROME CALCULATIONS 

 
The BCH code is characterized as (n, k, t), where n is the 
code length, k is the data length, and t is the error correction 
capability. The n-bit codeword (r0, r1,…, rn-1) can be 
interpreted as a received polynomial, R(z) = r0 + r1z

1 +…+ 
rn-1z

n-1. In SC, 2t syndromes are computed using the 
following equation: 
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The conventional SC unit computing the i-th syndrome is 
shown in Fig. 1, where p and i stand for the parallel factor 
and the current iteration, respectively [1]. The p-parallel SC 
block, which can process p input bits in a cycle, takes 

pn / cycles and consists of 2t such units to generate 2t 
syndromes simultaneously. In order to find CSEs, a constant 
multiplication over GF(2m) is represented as a matrix 
multiplication [5]. For example, y=xαi can be expressed as 
follows: 
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It can be formulated as 
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where y and x represent 1×m binary matrices each denoting 
an element in GF(2m), and Ai is a m×m binary matrix for the 
constant GF multiplication. A bit-level optimization called 
IMA [8] is iteratively applied to find CSEs. A more efficient 
method was presented in [9], where even-indexed syndromes 
are derived from odd-indexed syndromes according to the 
following equation: 
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Note that every even-indexed syndrome can be obtained by 
applying a power operation to a certain odd-indexed 
syndrome. For example, Fig. 2(a) illustrates what power 
operations are needed to compute even-indexed syndromes 
for t=4. Only 4 odd-indexed syndromes are calculated from 
the received codeword, and then the remaining even-indexed 
syndromes are obtained by applying power operations. 
Therefore, the approach eliminates a half of registers that are 
otherwise needed to store temporary values for even-indexed 
syndromes. Moreover, the search space for CSEs can be 
enlarged, as multiple power operations that share the same 
input can be grouped together. The power operation, y=xw, 
over GF(2m) can be expressed as 
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where w is restricted to 2r for an even-indexed syndrome. It 
can be reformulated as 
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where Bw is a m×m binary matrix representing the w-th 
power operation. From (6), r even-indexed syndromes, 

which are driven from s1 by taking 21 to 2r power operations, 
can be expressed in a matrix multiplication as follows: 
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where si is an 1×m matrix corresponding to an m-bit 
syndrome, and SG1 is the first syndrome group that can be 
generated from s1. Note that PG1 is an m×m(r+1) binary 
matrix that generates all the syndromes relevant to s1. The i-
th SC unit that calculates SGi is drawn in Fig. 2(b), where i 
is an odd number less than 2t. Note that each unit has a 
separate search space denoted by a dashed box in Fig. 2(b). 
 

3. THE PROPOSED ARCHITECTURE 
 
The computational complexity of p-parallel SC is reduced in 
[9] by eliminating registers and CSEs in the enlarged 
matrices. As this approach has multiple search domains each 
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Fig. 1. A conventional p-parallel SC unit. 
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Fig. 2. A parallel SC based on power operations [9] (a) Calculation of 
even-indexed syndromes for t=4 and (b) the SC unit having an 
enlarged search space for common sub-expressions. 
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of which is searched independently, it may be possible to 
find more CSEs if all the search domains be merged together. 
In the proposed SC structure, all the operations of p-parallel 
SC, including the power operations needed to compute even-
indexed syndromes, are collected into a single matrix 
multiplication so as to find as many CSEs as possible. To 
obtain a single matrix multiplication performing p-parallel 
SC, the i-th SC unit of the conventional architecture shown 
in Fig. 1 is formulated as 
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where gi(j) is an 1×m binary matrix representing the m-bit 
intermediate value of the i-th syndrome and R(j) is an 1×p 
binary matrix representing p bits of the received codeword 
to be fed at the j-th iteration. The Ci matrix is a p×m binary 
matrix relevant to the input bits. In (8), we can see that all 
the equations in a single SC unit are collected into a matrix. 
If power operations are used to reduce the number of 
registers, t gi(j) values can be represented in a single matrix 
multiplication, where i is a positive odd number less than 2t. 
The enlarged matrix multiplication that computes t 
intermediate values for the next iteration can be expressed as 
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where, G(j) is a 1×mt binary matrix containing t temporary 
values of the j-th iteration. XR is a p×mt binary matrix for 
the input codeword and XG is an mt×mt binary matrix 
denoting t constant multiplications. Therefore, all the gi(j) 
values can be obtained by multiplying the input vector [R(j) 
G(j–1)] and the constant matrix including XR and XG. The t 
odd-indexed syndromes can be obtained directly from G(j–
1), and the remaining t even-indexed syndromes can be 
calculated based on power operations which can be 
formulated as in (6). The computation of 2t syndromes from 
G(j–1) can be expressed as 
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where S(j) is a 1×2mt binary matrix denoting 2t syndrome 
outputs at the j-th iteration. Note that S(j) becomes the 
desired syndromes at the last iteration. XS, which is an 
mt×2mt binary matrix, consists of m×m identity matrices and 
m×m binary matrices for power operations. As a result, all 
the computations needed in p-parallel SC are transformed 
into a single matrix multiplication as follows;  
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As the single matrix multiplication in (11) covers all the 

partial products related to the computations of t intermediate 
values and 2t syndromes, we can find more CSEs from (11) 
than the previous works do. Therefore, a low-complexity SC 
block can be achieved by employing the proposed 
reformulated equation. Fig. 3 illustrates the proposed 
hardware structure of p-parallel SC, which is based on (11). 
Compared to the previous architectures associated with 
multiple matrix multiplications, the proposed architecture 
has only a single matrix multiplication.  
 

4. IMPLEMENTATION RESULTS 
 
For diverse code parameters, three SC blocks are designed 
based on the conventional architecture, the previous 
architecture that computes even-indexed syndromes using 
power operations [9], and the proposed architecture. They 
are all synthesized in a 0.13μm CMOS process, and tuned to 
operate at 375MHz for fair comparisons. The proposed 
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Fig. 3. The proposed p-parallel SC block. 
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method always has less complexity compared to the previous 
works, as the single matrix multiplication guarantees finding 
more CSEs. For the (8752, 8192, 40) shortened BCH code, 
Fig. 4 compares how the area overheads of the three 
architectures are changing according to the parallel factor. 
   On the average, the proposed method reduces the 
hardware complexity by more than 15% and 55% compared 
to the SC method presented in [9] and the conventional 
method, respectively. Fig. 5 shows how the complexity is 
related to error correction capability with assuming a fixed 
message size of 8,192 bits. The proposed structure is always 
associated with the smallest area among the three structures. 
As a result, the proposed method that formulates all the SC 
operations into a single matrix multiplication is quite 
effective in searching for CSEs, reducing the hardware 
complexity of SC for a strong BCH decoder. 
 

5. CONCLUSION 
 
In this paper, an area-efficient SC architecture has been 
presented. The proposed architecture has only a single 
matrix multiplication, as all the operations in parallel 
syndrome calculation are formulated as a single matrix 
multiplication to enlarge search space for common sub-
expressions (CSEs). Compared to the previous works having 
multiple matrices, the proposed method maximizes the 
number of CSEs and reduces the hardware complexity of a 
SC block by sharing such CSEs. Implementation results 
show that the proposed architecture reduces up to 55% and 
15% of area requirements, compared to the conventional 
implementation and the previous power-based architecture 
[9], respectively. The proposed method becomes more 
attractive when designing a BCH decoder associated with 
the higher parallel factor and error-correction capability. 
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Fig. 5. The area of SC versus the error correction capability for the (n, 

8192, t) shortened BCH code. 
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Fig. 4. The area of SC versus the parallel factor for the (8752, 8192, 

40) shortened BCH code. 

1612


