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Abstract—A double error correcting (DEC) BCH codec is
designed for NOR flash memory systems to improve reliability.
Due to the latency constraint less than 10 ns, the fully parallel
architecture with huge hardware cost is utilized to process both
the encoding and decoding scheme within one clock cycle. Notice
that encoder and decoder will not be activated simultaneously in
NOR flash applications, so we combine the encoder and syndrome
calculator based on the property of minimal polynomials in
order to efficiently arrange silicon area. Furthermore, a new
error location polynomial is developed to reduce the number
of constant finite filed multipliers (CFFMs) in Chien search.
According to 90 nm CMOS technology, our propose DEC BCH
codec can achieve 2.5 ns latency with 41,705 μm

2 area.

I. INTRODUCTION

NOR flash memories, one of the most popular non-volatile
memories, are widely used in portable devices such as mo-
bile phones and game consoles. As mobile appliances are
prevailing in our daily life, the demand for high speed, high
density, and low-cost NOR flash memories with the multi-
level-cell (MLC) technique grows rapidly. Accordingly, the
memory process is scaling down aggressively to achieve these
requirements but damage the reliability dramatically. In NOR
flash applications, the bit error rate (BER) should be less than
10−12, but the BER is predicted to be higher than 10−6 in
the advanced process technologies 45nm. As a result, error
correction code (ECC) plays an important role to ensure
adequate reliability [1]–[4].

In general, single error correcting (SEC) ECC such as
Hamming code is extensively applied in NOR flash memories
due to its simple architecture and low latency. For shrinking
devices and increasing page size, SEC ECC becomes ineffi-
cient to compensate the high BER, as shown in Fig. 1. As a
result, double error correcting (DEC) BCH codes are neces-
sary; however, their iterative processing are not suitable for the
latency-constrained memories. Thus, fully parallel architecture
is proposed in this paper at the cost of increasing little area. By
using matrix operations, a new method to combine encoder and
syndrome calculator is developed. Additionally, a new error
location polynomial is defined to reduce the degree of error
location polynomial, so that the hardware cost in Chien search
will be sufficiently reduced.

This paper is organized as follows. Section II gives the
background of fully parallel BCH codecs. In Section III, a new
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Fig. 1. Error correction capability of Hamming code and DEC BCH code
with 256-bit data length [2].

encoding algorithm is developed for fully parallel architec-
tures. The proposed error location polynomial for DEC BCH
decoder is presented in Section IV. Based on the proposed
methods, Section V demonstrates the implementation and
comparison results. Finally, Section VI gives the conclusion.

II. BACKGROUND

For fully parallel architecture, the BCH codec processes
all bits simultaneously and therefore, the processing can be
considered as a series of matrix operations. In this section,
several matrix operations used in this paper are introduced.

A. Constant Finite Field Multiplier

Each arbitrary element over GF (2m) can be presented as

λ =
m−1∑
i=0

λiα
i with the binary coordinate λi and the basis

{α0, α1, · · · , αm−1} [5]. Hence, the multiplication between
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two arbitrary symbols, αj × λ, can be expressed as

αj × λ = αj × (λ0 + λ1α+ · · ·+ λm−1α
m−1)

=

⎡
⎢⎢⎢⎣

α
j
0 α

j+1
0 · · · α

j+m−1
0

α
j
1 α

j+1
1 · · · α

j+m−1
1

...
. . .

...
α
j
m−1 α

j+1
m−1 · · · α

j+m−1
m−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

λ0

λ1

...
λm−1

⎤
⎥⎥⎥⎦ (1)

= Cjλ,

where the binary element αp
l stands for the l-th coordinate of

αp and Cj is considered as a multiplicator matrix of constant
finite field multiplier (CFFM) with the constant αj .

B. Finite Field Square

Each arbitrary element, λ, over GF (2m) can be considered
as a polynomial with binary coefficients, so the calculation of
finite field square can be defined as

λ2 = (λ0 + λ1α+ · · ·+ λm−1α
m−1)2

= λ0 + λ1α
2 + · · ·+ λm−1α

2(m−1)

= (λ0 + λ1x+ · · ·+ λm−1x
m−1) |x=α2

=

⎡
⎢⎢⎢⎢⎣

α0
0 α2

0 · · · α
2(m−1)
0

α0
1 α2

1 · · · α
2(m−1)
1

...
...

. . .
...

α0
m−1 α2

m−1 · · · α
2(m−1)
m−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

λ0

λ1

...
λm−1

⎤
⎥⎥⎥⎦

= Qλ (2)

From (2), for each arbitrary polynomial with binary coeffi-
cients f(x), the computation of f(x2) can be derived from
f2(x).

III. COMBINED ENCODER AND SYNDROME CALCULATOR

An (n, k; t) BCH code over GF (2m) with codeword length
of n bits and message length of k bits can correct up to t error
bits. As shown in Fig. 2, the conventional BCH decoding con-
tains three major blocks : syndrome calculator, key equation
solver and Chien search. In this section, the conventional BCH
encoder and syndrome calculator are introduced. Then, a new
encoding algorithm is presented.

Fig. 2. BCH Decoder Block Diagram.

A. Conventional BCH Encoding Algorithm

A message sequence can be considered as a polynomial
u(x) = uk−1x

k−1 + uk−2x
k−2 + · · · + u0 and a generator

polynomial g(x) of degree (n− k) is defined as

g(x) = LCM{M1(x),M2(x), · · · ,M2t(x)}

= M1(x) ×M3(x)× · · · ×M2t−1(x)

= gn−kx
n−k + · · ·+ g2x

2 + g1x+ g0, (3)

where Mi(x) is the minimal polynomial of αi with binary
coefficients. The systematic encoding

u(x)xn−k = q(x)g(x) + p(x) (4)

can provide a codeword polynomial c(x) = u(x)xn−k+p(x) ,
where the parity polynomial p(x) with binary coefficients can
be expressed as

p(x) = pn−k−1x
n−k−1 + pn−k−2x

n−k−2 + · · ·+ p0

= (uk−1x
n−1 + uk−2x

n−2 + · · ·+ u0x
n−k) mod g(x)

= uk−1x
n−1 mod g(x) + uk−2x

n−2 mod g(x) + · · ·

+ u0x
n−k mod g(x) (5)

The coefficients of p(x) also can be rewritten as following
matrix:⎡
⎢⎢⎢⎣

p0
p1
...

pn−k−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

dn−1,0 dn−2,0 · · · dn−k,0

dn−1,1 dn−2,1 · · · dn−k,1

...
...

. . .
...

dn−1,n−k−1 dn−2,n−k−1 · · · dn−k,n−k−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u0

u1

...
uk−1

⎤
⎥⎥⎥⎦

= D · U (6)

where di,0 + di,1x + · · · + di,n−k−1x
n−k−1 denotes xi mod

g(x) and i = n−1, n−2, · · · , n−k. From (6), a fully parallel
BCH encoder can process n bits simultaneously.

B. Syndrome Calculator

For BCH decoding algorithms, the syndrome calculator
firstly calculates the syndrome values Si = r(x) |x=αi , where
i = 1, 3, · · · , 2t− 1 and r(x) is a received codeword polyno-
mial. Since the multi-cycle latency is not tolerable for NOR
flash memories, the syndrome calculator should process n bits
simultaneously to calculate the syndrome value, Notice that the
syndrome calculator can be considered as the multiplication of
the receive codeword and the parity check matrix HSYN, which
defined in (7), in fully parallel architecture.⎡
⎢⎢⎢⎣

S1

S3

...
S2t−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1 α α2 · · · αn−1

1 α3 α6 · · · α3(n−1)

...
. . .

...
1 α2t−1 α2(2t−1) · · · α(2t−1)(n−1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

r0
r1
...

rn−1

⎤
⎥⎥⎥⎦

= HSYN · r (7)

Si = r0 + r1α
i + r2α

2i + · · ·+ rn−1α
i(n−1)

=

⎡
⎢⎢⎢⎢⎣

1 αi
0 α2i

0 · · · α
i(n−1)
0

0 αi
1 α2i

1 · · · α
i(n−1)
1

...
...

...
. . .

...

0 αi
m−1 α2i

m−1 · · · α
i(n−1)
m−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

r0
r1
...

rn−1

⎤
⎥⎥⎥⎦

C. Proposed Encoding Algorithm

According to (3), we can find that α, α3, · · · , α2t−1 and
their conjugates are the roots of g(x). Taking all the n − k

roots into (4), we can obtain n− k equations, and express as

p(x) = u(x)xn−k |x=αi and their conjugates, (8)

where i = 1, 3, · · · , 2t − 1. From the n − k equations in
(8), which can support us to find the coefficients of parity
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polynomial p(x), can be also rewritten as : BP = AHENU,
where

B =

⎡
⎢⎢⎢⎣
1 α · · · αn−k−1

1 α2 · · · α2×(n−k−1)

...
. . .

...
1 α(2t−1)×l2t−1 · · · α(2t−1)×l2t−1×(n−k−1)

⎤
⎥⎥⎥⎦

A =

⎡
⎢⎢⎢⎣
αn−k 0 · · · 0

0 α2(n−k) · · · 0
...

. . .
...

0 · · · 0 α(2t−1)×l2t−1×(n−k)

⎤
⎥⎥⎥⎦

HEN =

⎡
⎢⎢⎢⎣
1 α · · · αk−1

1 α2 · · · α2(k−1)

...
. . .

...
1 α(2t−1)×l2t−1 · · · α(2t−1)×l2t−1×(k−1)

⎤
⎥⎥⎥⎦

U =

⎡
⎢⎢⎢⎣

u0

u1

...
uk−1

⎤
⎥⎥⎥⎦ , P =

⎡
⎢⎢⎢⎣

p0
p1
...

pn−k−1

⎤
⎥⎥⎥⎦ . (9)

Note that li in (9) denote the number of αi’s conjugates.
In addition, because g(x) = M1(x) × M3(x) × · · · ×

M2t−1(x), the roots of g(x) can be divided into t groups
based on minimal polynomials. For example, the roots of
M1(x), {α, α2, · · · , α2m−1

}, is one of the t groups. Hence,
we choose one root from each group to take into u(x) instead
of all roots of g(x). In this paper, we choose α, α3, · · · , α2t−1

to obtain u(α), u(α3), · · · , u(α2t−1). With the property in (2),
we can derive u(x) |

x=αi×2j from u(αi) multiply by Qj where
j = 1, 2, · · · , li. Note that li is the value of the number of αi’s
conjugates and Qj denotes matrix Q to the power degree of
j. Therefore HENU can be factorized as HENU = Q̂H’ENU,
where Q̂ is defined by (10) and H’EN is defined by (11).

Q̂ =

⎡
⎢⎢⎢⎣

Q’ 0 · · · 0
0 Q’ · · · 0
...

. . .
...

0 · · · 0 Q’

⎤
⎥⎥⎥⎦ ,Q’ =

⎡
⎢⎢⎢⎣

Q0

Q1

...
Qli

⎤
⎥⎥⎥⎦ (10)

H’EN =

⎡
⎢⎢⎢⎣
1 α α2 · · · αk−1

1 α3 α6 · · · α3(k−1)

...
. . .

...
1 α2t−1 α2(2t−1) · · · α(2t−1)(k−1)

⎤
⎥⎥⎥⎦ (11)

Note that Q0 is an identity matrix and H’EN, a sub-matrix of
parity check matrix, can be shared with syndrome calculator.
Consequently, the equation BP = AHENU can be reformulated
as BP = AQ̂H’ENU. In addition, the matrix B is non-singular,
so we can drive

P = B−1A Q̂ H’EN U = E H’EN U (12)

to get parity bits, where B−1 is the inverse matrix of B and
matrix E is equal to B−1AQ̂.

TABLE I
SYNTHESIS RESULTS FOR JOINT ENCODER AND SYNDROME CALCULATOR

IN 90 NM CMOS TECHNOLOGY

(n, k, t) This work *Conventional method Area Saving
(Gate count) (Gate count)

(274, 256, 2) 2671 4621 42%
(283, 256, 3) 4100 6904 41%
(532, 512, 2) 5105 9234 45%
(542, 512, 3) 7745 13707 43%

*An extra syndrome calculator is required to support syndrome values evaluation.

**The clock period in this table is 2.5 ns.

Therefore, the message matrix U is firstly multiply by
matrix H’EN. Then the product of matrix E and H’ENU can
support us to get the parity bits. Notice that we can regard 0
or 1 as a m-bits symbol over GF (2m), 0 = [0, 0, · · · , 0]T and
1 = [1, 0, · · · , 0]T . And the elements in the result of E times
H’ENU are 0 = [0, 0, · · · , 0]T or 1 = [1, 0, · · · , 0]T since
the parity bits are binary. However, the elements of parity bits
matrix P are only one bit, instead of (1), each CFFM in matrix
E can be reduced to one row as (13).

αj × λ = αj × (λ0 + λ1α+ · · ·+ λm−1α
m−1)

=
[
α
j
0 α

j+1
0 · · · α

j+m−1
0

]
⎡
⎢⎢⎢⎣

λ0

λ1

...
λm−1

⎤
⎥⎥⎥⎦ (13)

= Cj
Eλ

where Cj
E is called a CFFM with αj as the constant multi-

plicator in the matrix E. After the simplification and sharing
the parity check matrix, a n − k by n − k matrix is used to
encode the information bits instead of using D, which is a k

by n− k matrix.
The conventional BCH encoder in fully parallel architecture

is implemented by the matrix D in (6), which is used to find
the result of u(x)xn−k mod g(x). Apparently, the matrix
D is totally different from the parity check matrix HSYN,
which generate the syndrome value Si = r(x) |x=αi , so that
encoder can not be shared with syndrome calculator. In this
section, we develop a new encoding method for BCH codes
in fully parallel architecture in order to combine encoder and
syndrome calculator. As listed in Table I, the hardware cost
of encoder can be significantly reduced.

IV. LOW COMPLEXITY BCH DECODER IN FULLY

PARALLEL ARCHITECTURE

After syndrome calculator provides the syndrome values,
the error location polynomial can be acquired by key equation
solver. Then Chien search can support us to find the error
location. Note that the hardware complexity in Chien search,
which dominates the hardware complexity of decoder, depends
on the number of CFFMs and dramatically increases with the
degree of error location polynomial. In order to efficiently
arrange silicon area, this section provides a new method to
reduce the degree of error location polynomial.

1607



A. Conventional Error Location Polynomial

With the syndrome values, the error location polynomial
Λ(x) can be obtained by key equation solver. To eliminate the
time-consuming iterations, Peterson’s algorithm is proposed
in [6] instead of using iterative Berlekamp-Massey(BM) al-
gorithm. Notice that Peterson’s algorithm is not suitable for
the large error correcting capability. For DEC BCH codes,
Peterson’s algorithm provides the error location polynomial

Λ(x) = 1 + S1x+ (S2
1 +

S3

S1
)x2 (14)

However, complicated division still exists in (14); thus, a
inversion-less error location polynomial Λ′(x) provided by [7]
is adopted by [2].

Λ′(x) = S1 + S2
1x+ (S3

1 + S3)x
2 (15)

B. Proposed Error Location Polynomial

Instead of using (15), the reverse error location polynomial
(RELP) is proposed. For a DEC BCH decoder, the RELP
Λ̃(x) = (x + S1)

3 + x3 + S3 is given by [8] [9]. Because
it is too complicate to compute (x + S1)

3 in Λ̃(x), we can
reformulate Λ̃(x) as

Λ̃(x) = (x+ S1)
3 + x3 + S3

= x3 + S1x
2 + S2

1x+ S3
1 + x3 + S3

= S1x
2 + S2

1x+ (S3
1 + S3) (16)

Note that x = [x0, x1, · · · , xm−1]
T can be presented as x0 +

x1α+ · · ·+ xm−1α
m−1, (16) can be expressed as

Λ̃′(x) = S1(x0 + x1α
2 + · · ·+ xm−1α

2(m−1))

+ S2
1(x0 + x1α+ · · ·+ xm−1α

m−1) + S3
1 + S3

= T · [x0, x1, · · · , xm−1]
T + S3

1 + S3 (17)

where matrix T is defined as

T = [S1 + S2
1 , S1α

2 + S2
1α, · · · , S1α

2(m−1) + S2
1α

m−1]

With (1) and (2), matrix T can be expressed as

T =
[
(C0+Q)S1, (C2+C1Q)S1, · · · , (C

2(m−1)+Cm−1Q)S1

]
=

[
K0 · S1, K1 · S1, · · · , Km−1 · S1

]
Apparently, the dimension of matrix Ki (i = 1 ∼ m − 1) is
the same as that of CFFMs. Therefore, the hardware cost we
need to construct matrix T can be regarded as the cost of m
CFFMs.

Finally, Chien search is performed to find out the error
locations by substituting α0, α1, · · · and αn−1 into (17). If αi

is the root of (17), the i-th bit is erroneous. For the decoding
latency constraint, all the substitutions are applied in parallel.
Note that the number of CFFMs we need to applied to Chien
search is 2n when (15) is employed. However, we can reduce
the number of CFFMs to n+m by using our proposed error
location polynomial.

V. EXPERIMENT RESULTS AND COMPARISON

This section demonstrates the synthesis results for a DEC
BCH codec with our proposed architecture. For the low
reliability NOR flash memories, our design provides double
error correcting capacity to protect 256 bits information.
TABLE II demonstrates the synthesis results and comparison
results between proposed design and the design in [2]. Base on
90 nm CMOS technology, our design is 14,789 gate-counts.
Moreover, the latency is 2.5 ns, which can fit well for latency-
constrained flash memory systems.

TABLE II
SYNTHESIS RESULTS OF PROPOSED DEC BCH CODEC

Proposed Work CICC’09 [2]
Component Encoder + Decoder Decoder
Technology 90 nm 0.18 μm

Cycle 1 1
Clock period

2.5 ns 4.51 ns(Synthesis)
Data size (bits) 256 256

Throughput 102.4Gb/s 56.76Gb/s
Area (μm2) 41,705 283,512
Gate-count 14,789 N/A

VI. CONCLUSION

In this paper, a fully parallel DEC BCH codec for NOR
flash memories is presented. Based on our proposed encoding
method, the combined encoder and syndrome calculator archi-
tecture is introduced to reduce the hardware cost. Moreover,
the number of CFFMs, which dominate the hardware complex-
ity of fully parallel Chien search unit, is significantly decreased
from 2n to n + m. After implemented in 90 nm CMOS
technology, the proposed fully parallel (274,256;2) BCH codec
can achieve 2.5 ns latency with 41,705 μm2 silicon area.
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