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ABSTRACT

This paper presents a new minimax method for designing low-
complexity and high-accuracy odd-order finite-impulse-response
(FIR) variable fractional-delay (VFD) digital filters. The objective
of the minimax design is to minimize the maximum absolute error of
the variable frequency response (VFR) by utilizing the second-order
cone programming (SOCP) and achieves a global minimax solution.
We formulate the SOCP minimax design by using different-order
sub-filters in the Farrow structure such that the complexity of an odd-
order FIR VFD filter can be reduced. An odd-order design example
is given to demonstrate the effectiveness of the new SOCP-based
minimax design approach.

Index Terms— Variable digital filter, variable fractional-delay
(VFD), odd-order FIR VFD digital filter, second-order cone pro-
gramming (SOCP), minimax design.

1. INTRODUCTION

The digital filters with changeable frequency responses are referred
to as variable digital filters. Applying variable digital filters during
signal processing does not necessitate redesigning a new filter, and
a new frequency response can be easily obtained. Basically, vari-
able filters include those with variable magnitude responses [1]-[5]
or/and variable fractional-delay (VFD) responses [6]-[18]. Without
redesigning a new filter, the users can instantly tune the frequency
response of a variable digital filter on-line. VFD filters have found
various signal processing applications such as sampling rate conver-
sion [6], discrete-time signal interpolations [7], and fractional-order
differentiator design [8].

The main objective of this paper is to formulate the minimax
design of an odd-order finite-impulse-response (FIR) VFD filter as
a second-order cone programming (SOCP) problem that can be ef-
ficiently solved by using a primal-dual interior-point method. The
SOCP has been successfully utilized to design even-order VFD fil-
ters [17], which guarantees the optimality of the minimax solution
in the sense that the maximum absolute VFR error is truly mini-
mized, i.e., the minimax design is an exact solution without any ap-
proximation. Since the SOCP-based minimax design uses different-
order sub-filters in the Farrow structure, we also apply a one-by-
one increase scheme to simultaneously optimize all the sub-filter or-
ders such that a given maximum design error bound is exactly met.
This reduces the total VFD filter complexity and yields an optimal
low-complexity structure. An odd-order design example is given to
demonstrate the effectiveness of the SOCP design formulation.

2. VFR ERROR OF ODD-ORDER VFD FILTER

This section first derives the VFR error using the transfer function
with different-order sub-filters, which is necessary for formulating
the SOCP-based minimax design to be stated in the next section.

The ideal VFR of an odd-order FIR VFD filter is

HI(ω, d) = e−jωd (1)

where ω ∈ [0, απ], and d is the VFD parameter, d ∈ [0, 1]. In order
to exploit the coefficient symmetry proved in [11] in the minimax
design, we substitute

d =
1

2
+ p, p ∈ [−0.5, 0.5]

and yield
HI(ω, d) = e−j ω

2 ĤI(ω, p) (2)

with
ĤI(ω, p) = e−jωp. (3)

To approximate (2), we use the transfer function

H(z, p) =

N+1∑
n=−N

hn(p)z−n (4)

with variable coefficients

hn(p) =

M∑
m=0

a(n, m)pm. (5)

Substituting (5) into (4) leads to

H(z, p) =

N+1∑
n=−N

M∑
m=0

a(n, m)z−npm

=

M∑
m=0

[
N+1∑

n=−N

a(n, m)z−n

]
pm

=

Me∑
m=0

Fm(z)p2m +

Mo∑
m=1

Gm(z)p2m−1

(6)

where Me, Mo are defined as

Me =
⌊

M

2

⌋
, Mo =

⌈
M

2

⌉
(7)
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� �, � � are floor and ceiling functions, respectively, and

Fm(z) =

N+1∑
n=−N

a(n, 2m)z−n

Gm(z) =

N+1∑
n=−N

a(n, 2m − 1)z−n

(8)

are odd-order sub-filters in the Farrow structure. Fig. 1 illustrates an
example of the Farrow structure with (Me, Mo) = (1, 2). As we
have proved in [11], the coefficient symmetry

a(1 − n, m) = (−1)m · a(n, m) (9)

holds, i.e., the sub-filters Fm(z) have even-symmetric coefficients,
and Gm(z) have odd-symmetric (anti-symmetric) coefficients. Sub-
stituting (9) into (8) yields

Fm(z) = z− 1
2 F̂m(z)

Gm(z) = z− 1
2 Ĝm(z)

with

F̂m(z) =

N+1∑
n=1

a(n, 2m)
[
z(n− 1

2 ) + z−(n− 1
2 )

]

Ĝm(z) = −
N+1∑
n=1

a(n, 2m − 1)
[
z(n− 1

2 ) − z−(n− 1
2 )

]
.

Hence, the transfer function (6) can be rewritten as

H(z, p) = z− 1
2 Ĥ(z, p) (10)

with

Ĥ(z, p) =

Me∑
m=0

F̂m(z)p2m +

Mo∑
m=1

Ĝm(z)p2m−1. (11)

Comparing (2) with (10) shows that Ĥ(z, p) approximates ĤI(ω, p)

in (3). Here, F̂m(z) and Ĝm(z) may take different orders. Using
different-order sub-filters obtains the frequency responses of F̂m(z)

and Ĝm(z) as

F̂m(ω) =

Nem+1∑
n=1

bem(n) cos(n − 1

2
)ω = cT

mbem

Ĝm(ω) = (−j) ·
Nom+1∑

n=1

bom(n) sin(n − 1

2
)ω

= (−j) · sT
mbom

(12)

where

bem(n) = 2a(n, 2m), n = 1, 2, · · · , (Nem + 1)
bom(n) = 2a(n, 2m − 1), n = 1, 2, · · · , (Nom + 1)

(13)

cT
m =

[
cos(ω

2
) cos( 3ω

2
) · · · cos(Nem + 1

2
)ω

]
sT

m =
[
sin(ω

2
) sin( 3ω

2
) · · · sin(Nom + 1

2
)ω

]

and

bem =

⎡
⎢⎢⎣

bem(1)
bem(2)

...
bem(Nem + 1)

⎤
⎥⎥⎦ , bom =

⎡
⎢⎢⎣

bom(1)
bom(2)

...
bom(Nom + 1)

⎤
⎥⎥⎦

are coefficient vectors of Fm(z) and Gm(z) as shown in (13). Con-
sequently, the frequency response of Ĥ(z, p) becomes

Ĥ(ω, p) =

Me∑
m=0

(
cT

mbem

)
p2m − j

Mo∑
m=1

(
sT

mbom

)
p2m−1

=

Me∑
m=0

fT
mbem − j

Mo∑
m=1

gT
mbom

= fT be − jgT bo

(14)

where

fT
m = p2mcT

m, fT =
[
fT
0 fT

1 · · · fT
Me

]
gT

m = p2m−1sT
m, gT =

[
gT

1 gT
1 · · · gT

Mo

]

be =

⎡
⎢⎢⎣

be0

be1

...
beMe

⎤
⎥⎥⎦ , bo =

⎡
⎢⎢⎣

bo1

bo2

...
boMo

⎤
⎥⎥⎦ . (15)

Thus, the VFR error between Ĥ(ω, p) and ĤI(ω, p) is

ê(ω, p) = Ĥ(ω, p) − ĤI(ω, p)

= eR(ω, p) − jeI(ω, p)
(16)

with

eR(ω, p) = fT be − cos(ωp)

eI(ω, p) = gT bo − sin(ωp).
(17)

3. ODD-ORDER SOCP DESIGN FORMULATION

The minimax design can be formulated as

minimize ε

subject to |ê(ω, p)| ≤ ε
(18)

with

|ê(ω, p)| =
√

e2
R(ω, p) + e2

I (ω, p) (19)

i.e., the coefficient vectors be and bo in (15) can be simultaneously
optimized by solving the SOCP problem

minimize ε

subject to
√

e2
R(ω, p) + e2

I (ω, p)| ≤ ε
(20)

where the constraint is quadratic (conic), i.e., the vector[
ε

eR(ω, p)
eI(ω, p)

]
=

[
ε

− cos(ωp) + fT be

− sin(ωp) + gT bo

]
∈ Kq (21)
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where Kq is called quadratic cone or second-order cone (SOC), and
the vector in (21) is affine in ε, be, and bo. Let

y =
[
ε bT

e bT
o

]T

bT =
[−1 0 · · · 0

] (22)

the minimax design (20) can be formulated as the SOCP problem
(dual SOCP problem)

maximize bT y

subject to c − AT y ∈ Kq

(23)

where

c =

[
0

− cos(ωp)
− sin(ωp)

]
, AT = −

[
1 0 0
0 fT 0
0 0 gT

]
. (24)

Since ω and p take continuous values, the discretized version of (23)
can be solved on a set of discrete points (ωl1 , pl2) by sampling ω ∈
[0, απ] and p ∈ [0, 0.5] with step sizes απ/(L1 −1) and 0.5/(L2 −
1), respectively. The number of total discrete points is L1L2. As a
result, the SOCP design can be formulated as

maximize bT y

subject to cl − AT
l y ∈ Kq, l = 1, 2, · · · , L

(25)

where L is the total number of discrete points, L = L1L2. The
SOCP problem in (25) can be solved by using the well-known effi-
cient software SeDuMi.

4. ODD-ORDER DESIGN EXAMPLE

The ideal VFR in (1) is approximated with α = 0.9 such that the
maximum VFR error is below the upper error bound −100 dB. By
setting (Me, Mo) = (3, 4), (L1, L2) = (201, 31), and sub-filter
orders [

Ne1 Ne2 Ne3

]
=

[
33 32 24 12

]
[
No1 No2 No3 No4

]
=

[
17 16 10 2

] (26)

where the sub-filter orders are obtained by applying a one-by-one
increase scheme that simultaneously optimizes the sub-filter orders[
Ne1 Ne2 Ne3

]
and

[
No1 No2 No3 No4

]
. Thus, the total

number of the VFD filter coefficients is 154.
To evaluate the design accuracy, we use the maximum VFR error

in decibel (dB) defined as

εMax = max {20 log10 |ê(ω, p)|, ω ∈ [0, απ], p ∈ [−0.5, 0.5]}
(27)

and the normalized root-mean-square (NRMS) VFR error

ε2 =

⎡
⎢⎢⎣

∫ απ

0

∫ 0.5

−0.5

|ê(ω, p)|2dpdω∫ απ

0

∫ 0.5

−0.5

|ĤI(ω, p)|2dpdω

⎤
⎥⎥⎦

1/2

× 100%. (28)

Both the above two errors are numerically evaluated by discretizing
ω ∈ [0, απ] with step size απ/200 and p ∈ [−0.5, 0.5] with step
size 1/60, which generates 201 points for ω ∈ [0, απ] and 61 points
for p ∈ [−0.5, 0.5]. The design errors are

εMax = −100.09 (dB), ε2 = 0.000702%. (29)

If the decoupling linear programming (LP) technique is used [18],
which linearizes the non-linear minimax design as two separate LP
designs, the number of total VFD filter parameters is 159 in order to
satisfy the upper error bound, and the resulting design errors are

εMax = −100.24 (dB), ε2 = 0.000562%. (30)

Therefore, the SOCP design requires fewer paramters (4 parame-
ters less) than the LP technique to meet the given upper error bound
−100 dB, but its NRMS error becomes slightly larger. Theoretically,
the SOCP design yields the global minimax solution, while the de-
coupling LP design is somewhat simpler but only yields an approx-
imate minimax solution. Therefore, there is a trade-off between the
design accuracy and the design computation. As long as the slightly
increased computation required in the design is affordable, the SOCP
technique may be preferable because it always generate the globally
optimal minimax design.

Fig. 2 depicts the absolute VFR errors from the odd-order SOCP
design. Obviously, all the VFR errors are below −100 dB. Fig. 3
shows the VFD response, and Fig. 4 plots its absolute errors with
maximum value 0.000719.

5. CONCLUSION

This paper has formulated a global minimax method for designing
an odd-order FIR VFD digital filter with different-order sub-filters.
The minimax design is achieved by using the SOCP, which is a more
general convex programming than the LP and theoretically yields the
optimal minimax solution. By using both the SOCP formulation and
different-order sub-filters, an odd-order low-complexity and high-
accuracy VFD filter can be designed. A design example has been
given to illustrate the global optimality of the SOCP design and the
low-complexity of the resulting odd-order VFD filter.
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Fig. 2. Absolute VFR errors (odd-order SOCP design).
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Fig. 3. VFD response (odd-order SOCP design).
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Fig. 4. Absolute VFD errors (odd-order SOCP design).
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