
(1)

IMPROVING FIXED-POINT ACCURACY OF FFT CORES IN O-OFDM SYSTEMS

Robert Koutsoyannis1, Peter A. Milder1, Christian R. Berger1, Madeleine Glick2, James C. Hoe1, and Markus Püschel3

1 Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
2 APIC Corporation, Culver City, CA, USA

3 Department of Computer Science, ETH Zurich, Switzerland

ABSTRACT

Optical OFDM communication systems operating at data rates in
the 40Gb/s (and higher) range require high-throughput/highly
parallel fast Fourier transform (FFT) implementations. These
consume a significant amount of chip resources; we aim to reduce
costs by improving the system’s accuracy per chip-area. For
OFDM signals, we characterize the growth of data within the FFT
and explore several cost-conscious methods for improving the
fixed-point format. Using ASIC synthesis and hardware accurate
simulations, we evaluate the corresponding system error and
stability of these methods. We introduce Directive Scaling, which
provides an average increase in overall accuracy without additional
runtime-adaptive mechanisms. ASIC synthesis results show
minimal overhead, and we explicitly evaluate and explain the
inherent tradeoffs. When applied to an 8-bit IFFT design, our
technique improves precision by approximately two bits with just a
4% area overhead, as opposed to the additional 32% area overhead
required using standard methods.

Index Terms—OFDM, Fixed-Point, FFT, Saturation

1. INTRODUCTION

Orthogonal frequency-division-multiplexing (OFDM) has become
ubiquitous in communications across frequency selective channels.
It boasts high spectral efficiency and resilience to channel
impairments. OFDM now dominates wireless communications,
e.g. WiFi (IEEE 802.11a/g), and is now considered for optical fiber
communication systems [5]. Unlike wireless however, optical
fiber systems have signal bandwidths in the 10-100GHz spectrum
and push for data rates higher than 40Gb/s. Such high throughput
demands are only achievable with highly parallel hardware.
Therefore, the cost of the DSP, particularly the fast Fourier
transform (FFT), rapidly becomes a first order issue.

For example, the FPGA-based OFDM transmitter developed
in [3] requires a throughput of one 128-point IFFT every clock
cycle at 167MHz to generate an 8.34 Gb/s QPSK-OFDM signal.
The 10-bit fixed-point FFT implementation consists of 2,308
parallel adders and 908 parallel multipliers—consuming over 75%
of the Virtex-4 FX100 FPGA’s resources. Current systems [4]
target even higher data rates with larger FFT sizes, faster clocks,
and even more data precision to handle higher QAM modulation
formats—each of which compound the cost.

By improving the efficiency of the fixed-point format within
the FFT, one can reduce the number of bits required, resulting in
decreased area and power consumption. For example, our 12-bit
FFT design (synthesized for 65nm ASIC) requires 26% more area
than a 10-bit design. The 12-bit FFT FPGA implementation in [3]
requires 20% more area than its 10-bit counterpart. Although the
rate of savings diminishes with higher bit-precision, the target

accuracy for O-OFDM systems is within this range. This is
because any added precision would be dominated by the error
introduced by the communications channel and limited resolution
DACs and ADCs.

As data is computed in the discrete stages of FFT, the largest
value increase (in magnitude) that can occur is a factor of two per
stage, while the average magnitude increases only by a factor of

 [2]. Conventional FFT implementations therefore employ
forced scaling, which scales the data by a factor of ½ (one bit-shift
right) after each stage to fully avoid overflow. However, relative
to the average magnitude, this reduces the fixed-point precision by
one half of a bit per stage.

Alternatively, at additional cost, adaptive hardware
mechanisms like block floating point can be used to conditionally
scale the data, i.e. scale data only when an overflow is detected [2].
So, when overflow does not occur in a stage, scaling will not be
performed, and the least significant bit for each value is preserved.
This adaptive method avoids overflow at all cost, even if just one
or very few data elements overflow.

For OFDM signal inputs to the FFT, there is a low probability
of overflow in nearly half the stages, while there is high probability
in the others. In this paper, we introduce directive scaling, a
technique that takes advantage of this predictable pattern.
Directive scaling works by using forced scaling in FFT stages
likely to overflow; in the other stages we tolerate an occasional
overflow by using saturating arithmetic. We perform ASIC
synthesis to quantify hardware costs and use hardware-accurate
MATLAB simulations to quantify the numerical error of directive
scaling and existing techniques. We show that our strategy
approaches the accuracy of conditional scaling but with
implementation cost very close to the inexpensive forced scaling
method.

2. O-OFDM AND THE FFT HARDWARE

The fast Fourier transform (FFT) is the most expensive DSP
component in an Optical Orthogonal Frequency Division
Multiplexing (O-OFDM) transceiver. A simplified OFDM
transceiver is shown in Figure 1(a). The transmitter generates a
complex baseband signal by modulating data symbols, e.g.,
quadrature phase-shift keying (QPSK) or quadrature amplitude
modulation (QAM) (see Figure 1(b)) onto frequency subcarriers
using an inverse discrete Fourier transform (IDFT) of size n,

Several aspects of the fast Fourier Transform (FFT) hardware
implementation contribute to its fixed-point accuracy. The
following sections provide insight and arguments for several
design choices.

1585978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

(a)

(b)

Figure 1. (a) Simplified OFDM Transceiver, (b) Complex Data

Constellations

Pease FFT Algorithm. Many FFT algorithms exist for
efficiently computing the discrete Fourier transform (DFT) and its
inverse (IDFT). In this paper we consider the Pease FFT [7],
which is frequently used in hardware implementations of the DFT
due to its regular structure. This algorithm can be realized as
several different types of datapaths, each with a different
cost/performance tradeoff [8].

Figure 2 shows an example of the dataflow of the Pease FFT
with n = 16 points and radix r = 4. The radix 4 Pease FFT on
n = r t points consists of t stages of parallel DFTr instances (each of
which perform an FFT on r points), data reordering stages
(permutations), and scaling by complex phasors (twiddle factors).
Each of the DFT4 blocks is further decomposed into DFT2 blocks
as shown. The DFT2 blocks, often called butterflies, contain only
one addition and one subtraction.

Each non-trivial (≠1) twiddle multiplication can contribute
significant error. The irrational root-of-unity twiddle values are
stored as p-bit values with added quantization error. As the radix
of an FFT algorithm increases, the number of nontrivial twiddle
factors decreases, but with quickly diminishing returns. For
example, a 256 point radix-4 FFT has 22.3% fewer significant
twiddles than a radix-2 FFT of the same size. Increasing the radix
further to 16 yields only an additional 4.4% reduction. Note
however, as the radix r of an algorithm increases, fewer problem
sizes rt can be directly represented with this manner of algorithm.
Therefore, this paper considers the radix 4 Pease FFT algorithm,
but it can be extended to a wider space of radices and algorithms.

Fixed-Point Representation. The fixed-point representation
and associated arithmetic of the data within the FFT
implementation dictate the numerical accuracy. Each complex
number is represented by two data words, one for each of the real
and imaginary portions of the number. Each word is a p-bit 2’s
complement value normalized to the bounds [–1,1) or more
accurately, [–1, 1–(½)(p–1)]. In this fractional 2’s complement
format, the most significant bit has a value of –1, followed by 0.5,
0.25,... and so on to the least significant bit (½)(p–1). We assume
that all operations that result in a rounding of data are handled with
simple truncation, i.e. rounding towards negative infinity.

Scaling Options within the FFT. Regardless of the choice of
radix r, each data sample must pass through log2n DFT2 butterflies
(for example, 4 stages in Fig 2). Each time a pair of data elements

Figure 2. Radix 4 Pease FFT for n = 16

passes through one of these stages (also potentially including a
twiddle factor), its values grow in magnitude [2]. We write the
computation of one stage as

,1222 2iixixiy 1212212 iixixiy (2)

where y is the output of the stage, x is the input, and the |ω| = 1
represent complex twiddle factors. Here, y[i] can never be larger
than twice the magnitude of x[i]. More specifically,

. (3)

Therefore, to avoid overflow within a stage of the FFT, the most
common fixed-point hardware designs either increase the bit
precision p by one bit after each butterfly, e.g. [6], or shift all data
words right by one bit (scale by ½) as in [2].

On the other hand, from the variance of the values,

 , (4)

where we assume that the x[i] are zero-mean and independent and
identically distributed (i.i.d.) OFDM symbols. This means that the
standard deviation, or the average magnitude of the values, will
grow with a factor of only per stage. Thus while the maximum
possible magnitude grows with a factor of two per stage, the
average only grows “half as fast” in a logarithmic sense.

Considering this, most values will not need scaling at every
stage to avoid overflow—in fact, it’s often the case that none do.
Thus, by forcing scaling, i.e. avoiding overflow at all cost,
precision is unnecessarily lost.

Existing adaptive scaling mechanisms (such as block floating
point) greatly improve accuracy by determining at run-time
whether or not scaling is necessary for each stage, ultimately
avoiding unnecessary truncation [2]. Several variations of
adaptive mechanisms can be realized based on the conditions for
scaling and they each have unique accuracy/cost tradeoffs.

In this paper, we will consider the two most common methods
of scaling data to avoid overflow (one fixed, and one adaptive):

1. Forced Scaling (FS): Data words are shifted right or
equivalently scaled by a factor of ½ after each butterfly.

2. Conditional Scaling (CS): After each stage of butterflies all n
values are compared to a threshold; if one or more values
exceed this bound, all values are scaled by a factor of ½.

 Scaling decisions are only made at the output of the
butterflies. Therefore, we must be careful in avoiding overflow at
the complex multipliers due to rotations. This is easily prevented
by limiting the input data size and CS threshold to or less—
keeping the values within ‘region A’ of Figure 3. Figure 3 shows

DAC
Data

1010001 QAM
Modulation IFFT

Complex Data (a+Bi)

Analog
Components

& Fiber
QAM

DemodulationFFT
Data

1010001

Frequency Domain Time Domain Frequency DomainTime Domain

TX RX

ADC

QPSK Symbols 64-QAM Symbols

imaginary imaginary

real real

DFT4

i

i

i

i

Stage 2 & 3Stage 0 & 1

input output

i

i

i

i

1586

(5)

Figure 3. Fixed-Point and Overflow Regions, similar to [2]

how a complex twiddle multiplication can rotate values out of the
fixed-point bounds, causing overflow. Alternatively, this paper
also reports results with a threshold of 0.5 because in hardware,
comparing every individual data word to a power of 2 constant
requires less logic than a p-bit constant representing . We
demonstrate this later where we explicitly compare the hardware
cost of the two boundary conditions.

3. FFT FIXED-POINT ACCURACY IN OFDM SYSTEMS

The numerical error introduced by the fixed-point implementation
of FFTs depends significantly on the considered input data. In this
paper we are particularly interested in the error introduced by an
IFFT as part of an optical orthogonal frequency-division-
multiplexing (O-OFDM) communications system; here the inputs
are i.i.d. randomly drawn QAM symbols, (see Figure 1(b)).

As a measurement setup, we compare our p-bit fixed-point
IFFT designs with an ideal (double-precision floating point) IFFT.
The mean-square error (MSE) of the signal is then, following from
eqn. (1),

,

which we assume independent of k. The normalized MSE
corresponds to the inverse signal-to-noise ratio at the transmitter.

We created a hardware-accurate MATLAB simulation to
evaluate the normalized MSE caused by a p-bit fixed-point IFFT,
and show its results in Figure 4. In general all error curves
decrease by about one decade per two bits of resolution. We show
errors to 10-5, because below this the error is dominated by the
signal converters and the communications channel.

From Figure 4, by comparing the curves at an identical
NMSE value, we can see that up to two bits of precision can be
gained by using CS. Since CS fully avoids overflows, its
performance will strictly be better than that of the conventional FS
implementation (we are only making better use of the available
fixed-point representation). Our goal is to then capitalize on the
obvious room for improvement, but without resorting to the
additional complexity of run-time methods. The additional
overhead of CS incurs a non-trivial hardware cost which we
present later. Accordingly, any adaptive method that determines
the optimum bit representation of data at run-time would incur a
similar cost.

4. DIRECTIVE SCALING

Figure 5 illustrates the run-time decisions made by CS while
computing 100 IFFTs with (a) QPSK and (b) 64-QAM input

Figure 4. NMSE of Forced and Conditional Scaling IFFT1024

(a) n = 1024, QPSK (b) n = 1024, 64-QAM

Figure 5. Conditional Scaling Decisions per Stage

signals. Each bar shows the percentage of time the IFFT needed to
scale in each of the 10 stages. For example, we see that with
QPSK inputs, the CS unit always needed to scale in stage 1, but
rarely in stage 10. Note that the result for each stage is dependent
on all previous stages. After several stages of scaling, the values
are reduced so they rarely overflow in a particular stage (e.g.
Figure 5(a), stage 6). Then, in subsequent stages, due to the
average growth per stage of , the data begin a pattern where
they must be scaled in every other stage only. Notice how the
pattern begins at an earlier stage for 64-QAM. This is because the
average magnitude of the input signal is lower for 64-QAM than
QPSK.

As shown in [1], OFDM signals begin to look Gaussian as
they progress through the IFFT. At that point, we characterize the
signals in terms of their standard deviation which correlates with
the maximum fixed-point representation. Furthermore, since we
know the IFFT grows by per stage, scaling essentially becomes
predictable with a probabilistic confidence.
It should also be pointed out that when determining a priori
whether a particular stage should scale, the following stages will
be affected by a “ripple effect” compared to the CS behavior. For
example, in Figure 5(b), if we fix stage 4 to always scale, we
antedate one scaling decision for about 20% of trials, which will
lead them to skipping their next scaling decision instead. Hence
stage 5 would no longer need to scale and every data element
would preserve the least significant bit.

From these observations we introduce Directive Scaling (DS),
where we a priori determine for each stage whether or not to scale.
In order to tolerate the rare occasions where a value grows too
large in a non-scaling stage, we use saturating adders to clip values
to their maximum—incurring instead a small saturation error as
opposed to a 2’s complement overflow error. For a given system
we choose a directive strategy, a length log2n vector of scaling

i2
2

i2
2

2
2

2
2

i1

1
1

i1

B

A

A’

Overflow
due to
twiddle

Safe from
Overflow

1587

Figure 6. IFFT designs comparing scaling techniques

decisions, where 1 indicates a scaling stage and 0 indicates a
saturating stage, e.g. [110101...]. The choice of scaling pattern
depends on several factors, including the bit precision, number of
(non-zero) IFFT inputs, input signal average magnitude, IFFT size,
and QAM modulation format. Given these system parameters, the
directive is easily found from running simulations at design time,
producing the scaling graphs like Figure 5.

Saturating logic must be added to mitigate the rare overflows
in DS, adding cost to the baseline FS hardware design.
Nevertheless, the cost is significantly less than the adaptive
mechanisms used in CS. Like CS, saturating logic allows choices
for a threshold value. DS can use a threshold of ~0.707 to prevent
overflow in the complex multipliers, or it can use the full fixed-
point boundary, [–1, 1) if saturating logic is included in the
multipliers in addition to the adders.

5. EVALUATION

In this section we evaluate the numerical error and chip area cost
of IFFT designs using directive scaling, and compare the results
with forced and conditional scaling. We find chip area by creating
RTL Verilog implementations of each design (based on FFTs
generated with Spiral [8]) and synthesizing them using Synopsys
Design Compiler targeting a 65nm standard cell library. Each
design successfully met all timing constraints at 200MHz, which
provides sufficient throughput for real-time transceivers (e.g., [3,
4]). Then for each design we use the previously mentioned bit-
accurate simulation to find the normalized mean square error
(NMSE) using 1000 trials with QAM-64 input signals.

Figure 6 shows the ASIC area (x-axis) vs. numerical error (y-
axis) of several scaling strategies for 256-point, 8-bit IFFTs. First,
the black line with triangles shows our baseline: forced scaling
with 8, 9, and 10 bits of precision (from left to right). As expected,
we see that increasing precision reduces error while increasing
area. Next, we show two red squares for conditional scaling (with
two different thresholds). We observe that these points improve
upon forced scaling; the 8-bit CS designs provide lower error than
forced scaling with lower area.
Next, the diamonds, triangles, and squares show three different DS
designs. Each group uses different thresholds (.5, .707, or 1, as
explained in Section 4). Within a group, the differences between
the points correspond to different choices of directive (e.g.
[11101010] vs. [11110101]). We see that the DS designs improve
upon both forced and conditional scaling; they can provide higher
accuracy at lower cost.

Figure 7 shows a more in-depth error analysis for a subset of
designs. Each point now has error bars representing 1 standard

Figure 7. IFFT designs showing stability of error

deviation in error and a star showing the worst observed error in
1,000 trials. Here we show how DS designs are on par with the
error of CS, yet have more relative stable error. This is because
although CS adaptively performs better than FS, occasionally a
combination of inputs forces additional error. The stable error
seen for the FS designs makes sense considering there’s no
variability when scaling at each stage.

Although we show DS operating on the IFFT, we have also
successfully applied the technique to the FFT (receiver). Here the
directives are reversed, where the initial stages alternate scaling
and saturation, while the later stages require scaling throughout.

6. CONCLUSION

When generating OFDM signals, the growth of data in the IFFT
follows a predictable pattern. This paper introduced directive
scaling, which exploits this predictability to produce an IFFT
design that scales data in stages where overflow is likely and
tolerates occasional overflow elsewhere. This technique improves
on forced and conditional scaling, matching or exceeding their
accuracy at lower cost.

7. REFERENCES

[1] J. Armstrong, H. A. Suraweera, S. Brewer, R. Slaviero, “Effect of

Rounding and Saturation in Fixed-Point DSP Implementation of IFFT
and FFT for OFDM Applications,” The Embedded Signal Processing
Conference (GSPx 2004), Sept. 2004.

[2] P. D. Welch, “A fixed-point fast Fourier transform error analysis,”
IEEE Trans. Audio and Electroacoustics, vol. AU-17, no. 2, pp. 151-
157, June 1969.

[3] Y. Benlachtar, P. Watts, R. Bouziane, P. Milder, R. Koutsoyannis, J.
Hoe, M. Püschel, M. Glick, and R. Killey, “Real-time digital signal
processing for the generation of optical orthogonal frequency-division-
multiplexed signals,” IEEE J. Select. Topics Quantum Electronics, vol.
16, no. 5, pp. 1235-1244, Sept. 2010.

[4] R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra,
J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W.
Freude, and J. Leuthold, “Real-time OFDM transmitter beyond 100
Gbit/s,” Opt. Express, vol. 19, no. 13, pp. 12740-12749, Jun. 2011

[5] J. Armstrong, “OFDM for optical communcations,” J. Lightwave
Technol., vol. 27, no. 3, pp. 189–204, Feb. 2009.

[6] W.-H. Chang and T. Q. Nguyen, “On the fixed-point accuracy analysis
of FFT algorithms,” IEEE Trans. Signal Processing, vol. 56, no. 10,
pp. 4673–4682, Oct. 2008.

[7] M. C. Pease, “An adaptation of the fast Fourier transform for parallel
processing,” J. of the ACM, vol. 15, no. 2, April 1968.

[8] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Formal
datapath representation and manipulation for implementing DSP
transforms,” in Proc. Design Automation Conference (DAC), 2008, pp.
385–390.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
10

-3

10
-2

10
-1

256-pt IFFTs, Error VS. Chip-Area, QAM-64

Chip Area (mm2)

E
rr

o
r

(N
M

S
E

)

FS, 8, 9, & 10-bit IFFTs
CS, 8-bit IFFT, [-0.5,0.5)
CS, 8-bit IFFT, [-0.707, 0.707)
DS, 8-bit IFFT, [-0.5,0.5)
DS, 8-bit IFFT, [-0.707, 0.707)
DS, 8-bit IFFT, [-1,1)

1
2

1

2

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
10

-3

10
-2

10
-1

256-pt IFFTs, Error VS. Chip-Area, QAM-64

Chip Area (mm2)

E
rr

or
 (N

M
S

E
)

FS, 8, 9, & 10-bit IFFTs
CS, 8-bit IFFT, [-0.5,0.5)
CS, 8-bit IFFT, [-0.707, 0.707)
[10101010] DS, 8-bit IFFT, [-0.5,0.5)
[11110101] DS, 8-bit IFFT, [-1,1)
[11101010] DS, 8-bit IFFT, [-1,1)

1588

