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ABSTRACT 
 

Optical OFDM communication systems operating at data rates in 
the 40Gb/s (and higher) range require high-throughput/highly 
parallel fast Fourier transform (FFT) implementations.  These 
consume a significant amount of chip resources; we aim to reduce 
costs by improving the system’s accuracy per chip-area.  For 
OFDM signals, we characterize the growth of data within the FFT 
and explore several cost-conscious methods for improving the 
fixed-point format.  Using ASIC synthesis and hardware accurate 
simulations, we evaluate the corresponding system error and 
stability of these methods.  We introduce Directive Scaling, which 
provides an average increase in overall accuracy without additional 
runtime-adaptive mechanisms.  ASIC synthesis results show 
minimal overhead, and we explicitly evaluate and explain the 
inherent tradeoffs.  When applied to an 8-bit IFFT design, our 
technique improves precision by approximately two bits with just a 
4% area overhead, as opposed to the additional 32% area overhead 
required using standard methods. 
 
Index Terms—OFDM, Fixed-Point, FFT, Saturation 
 
 

1.  INTRODUCTION 

Orthogonal frequency-division-multiplexing (OFDM) has become 
ubiquitous in communications across frequency selective channels.  
It boasts high spectral efficiency and resilience to channel 
impairments.  OFDM now dominates wireless communications, 
e.g. WiFi (IEEE 802.11a/g), and is now considered for optical fiber 
communication systems [5].  Unlike wireless however, optical 
fiber systems have signal bandwidths in the 10-100GHz spectrum 
and push for data rates higher than 40Gb/s.  Such high throughput 
demands are only achievable with highly parallel hardware.  
Therefore, the cost of the DSP, particularly the fast Fourier 
transform (FFT), rapidly becomes a first order issue. 

For example, the FPGA-based OFDM transmitter developed 
in [3] requires a throughput of one 128-point IFFT every clock 
cycle at 167MHz to generate an 8.34 Gb/s QPSK-OFDM signal.  
The 10-bit fixed-point FFT implementation consists of 2,308 
parallel adders and 908 parallel multipliers—consuming over 75% 
of the Virtex-4 FX100 FPGA’s resources.  Current systems [4] 
target even higher data rates with larger FFT sizes, faster clocks, 
and even more data precision to handle higher QAM modulation 
formats—each of which compound the cost. 

By improving the efficiency of the fixed-point format within 
the FFT, one can reduce the number of bits required, resulting in 
decreased area and power consumption.  For example, our 12-bit 
FFT design (synthesized for 65nm ASIC) requires 26% more area 
than a 10-bit design.  The 12-bit FFT FPGA implementation in [3] 
requires 20% more area than its 10-bit counterpart.  Although the 
rate of savings diminishes with higher bit-precision, the target 

accuracy for O-OFDM systems is within this range.  This is 
because any added precision would be dominated by the error 
introduced by the communications channel and limited resolution 
DACs and ADCs. 

As data is computed in the discrete stages of FFT, the largest 
value increase (in magnitude) that can occur is a factor of two per 
stage, while the average magnitude increases only by a factor of 

 [2].  Conventional FFT implementations therefore employ 
forced scaling, which scales the data by a factor of ½ (one bit-shift 
right) after each stage to fully avoid overflow.  However, relative 
to the average magnitude, this reduces the fixed-point precision by 
one half of a bit per stage. 

Alternatively, at additional cost, adaptive hardware 
mechanisms like block floating point can be used to conditionally 
scale the data, i.e. scale data only when an overflow is detected [2].  
So, when overflow does not occur in a stage, scaling will not be 
performed, and the least significant bit for each value is preserved. 
This adaptive method avoids overflow at all cost, even if just one 
or very few data elements overflow. 

For OFDM signal inputs to the FFT, there is a low probability 
of overflow in nearly half the stages, while there is high probability 
in the others.  In this paper, we introduce directive scaling, a 
technique that takes advantage of this predictable pattern.  
Directive scaling works by using forced scaling in FFT stages 
likely to overflow; in the other stages we tolerate an occasional 
overflow by using saturating arithmetic.  We perform ASIC 
synthesis to quantify hardware costs and use hardware-accurate 
MATLAB simulations to quantify the numerical error of directive 
scaling and existing techniques.  We show that our strategy 
approaches the accuracy of conditional scaling but with 
implementation cost very close to the inexpensive forced scaling 
method. 

2.  O-OFDM AND THE FFT HARDWARE 
 
The fast Fourier transform (FFT) is the most expensive DSP 
component in an Optical Orthogonal Frequency Division 
Multiplexing (O-OFDM) transceiver.  A simplified OFDM 
transceiver is shown in Figure 1(a).  The transmitter generates a 
complex baseband signal by modulating data symbols, e.g., 
quadrature phase-shift keying (QPSK) or quadrature amplitude 
modulation (QAM) (see Figure 1(b)) onto frequency subcarriers 
using an inverse discrete Fourier transform (IDFT) of size n, 
 

 

 
Several aspects of the fast Fourier Transform (FFT) hardware 
implementation contribute to its fixed-point accuracy.  The 
following sections provide insight and arguments for several 
design choices.  
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Figure 1. (a) Simplified OFDM Transceiver, (b) Complex Data 

Constellations 
 

Pease FFT Algorithm. Many FFT algorithms exist for 
efficiently computing the discrete Fourier transform (DFT) and its 
inverse (IDFT).  In this paper we consider the Pease FFT [7], 
which is frequently used in hardware implementations of the DFT 
due to its regular structure.  This algorithm can be realized as 
several different types of datapaths, each with a different 
cost/performance tradeoff [8].   

Figure 2 shows an example of the dataflow of the Pease FFT 
with n = 16 points and radix r = 4.  The radix 4 Pease FFT on 
n = r t points consists of t stages of parallel DFTr instances (each of 
which perform an FFT on r points), data reordering stages 
(permutations), and scaling by complex phasors (twiddle factors).  
Each of the DFT4 blocks is further decomposed into DFT2 blocks 
as shown.  The DFT2 blocks, often called butterflies, contain only 
one addition and one subtraction. 

Each non-trivial (≠1) twiddle multiplication can contribute 
significant error.  The irrational root-of-unity twiddle values are 
stored as p-bit values with added quantization error.  As the radix 
of an FFT algorithm increases, the number of nontrivial twiddle 
factors decreases, but with quickly diminishing returns.  For 
example, a 256 point radix-4 FFT has 22.3% fewer significant 
twiddles than a radix-2 FFT of the same size.  Increasing the radix 
further to 16 yields only an additional 4.4% reduction.  Note 
however, as the radix r of an algorithm increases, fewer problem 
sizes rt can be directly represented with this manner of algorithm.  
Therefore, this paper considers the radix 4 Pease FFT algorithm, 
but it can be extended to a wider space of radices and algorithms. 

Fixed-Point Representation.  The fixed-point representation 
and associated arithmetic of the data within the FFT 
implementation dictate the numerical accuracy.  Each complex 
number is represented by two data words, one for each of the real 
and imaginary portions of the number.  Each word is a p-bit 2’s  
complement  value normalized to the bounds [–1,1) or more 
accurately, [–1, 1–(½)(p–1)].  In this fractional 2’s complement 
format, the most significant bit has a value of –1, followed by 0.5, 
0.25,... and so on to the least significant bit (½)(p–1).  We assume 
that all operations that result in a rounding of data are handled with 
simple truncation, i.e. rounding towards negative infinity.   

Scaling Options within the FFT. Regardless of the choice of 
radix r, each data sample must pass through log2n DFT2 butterflies 
(for example, 4 stages in Fig 2). Each time a pair of data elements   

 
Figure 2. Radix 4 Pease FFT for n = 16 

 
passes through one of these stages (also potentially including a 
twiddle factor), its values grow in magnitude [2].  We write the 
computation of one stage as 
 

,1222 2iixixiy      1212212 iixixiy  (2) 
 
where y is the output of the stage, x is the input, and the |ω| = 1 
represent complex twiddle factors.  Here, y[i] can never be larger 
than twice the magnitude of x[i].  More specifically, 
 

.            (3) 
 
Therefore, to avoid overflow within a stage of the FFT, the most 
common fixed-point hardware designs either increase the bit 
precision p by one bit after each butterfly, e.g. [6], or shift all data 
words right by one bit (scale by ½) as in [2]. 

On the other hand, from the variance of the values,  
 

 , (4) 
 
where we assume that the x[i] are zero-mean and independent and 
identically distributed (i.i.d.) OFDM symbols.  This means that the 
standard deviation, or the average magnitude of the values, will 
grow with a factor of only per stage.  Thus while the maximum 
possible magnitude grows with a factor of two per stage, the 
average only grows “half as fast” in a logarithmic sense. 

Considering this, most values will not need scaling at every 
stage to avoid overflow—in fact, it’s often the case that none do.  
Thus, by forcing scaling, i.e. avoiding overflow at all cost, 
precision is unnecessarily lost. 

Existing adaptive scaling mechanisms (such as block floating 
point) greatly improve accuracy by determining at run-time 
whether or not scaling is necessary for each stage, ultimately 
avoiding unnecessary truncation [2].  Several variations of 
adaptive mechanisms can be realized based on the conditions for 
scaling and they each have unique accuracy/cost tradeoffs.   

In this paper, we will consider the two most common methods 
of scaling data to avoid overflow (one fixed, and one adaptive): 

1. Forced Scaling (FS): Data words are shifted right or 
equivalently scaled by a factor of ½ after each butterfly. 

2. Conditional Scaling (CS): After each stage of butterflies all n 
values are compared to a threshold; if one or more values 
exceed this bound, all values are scaled by a factor of ½.  

 Scaling decisions are only made at the output of the 
butterflies.  Therefore, we must be careful in avoiding overflow at 
the complex multipliers due to rotations.  This is easily prevented 
by limiting the input data size and CS threshold to  or less—
keeping the values within ‘region A’ of Figure 3. Figure 3 shows 
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Figure 3. Fixed-Point  and Overflow Regions, similar to [2]  
 

how a complex twiddle multiplication can rotate values out of the 
fixed-point bounds, causing overflow.  Alternatively, this paper 
also reports results with a threshold of 0.5 because in hardware, 
comparing every individual data word to a power of 2 constant 
requires less logic than a p-bit constant representing .  We 
demonstrate this later where we explicitly compare the hardware 
cost of the two boundary conditions. 

3.  FFT FIXED-POINT ACCURACY IN OFDM SYSTEMS 
 
The numerical error introduced by the fixed-point implementation 
of FFTs depends significantly on the considered input data.  In this 
paper we are particularly interested in the error introduced by an 
IFFT as part of an optical orthogonal frequency-division-
multiplexing (O-OFDM) communications system; here the inputs 
are i.i.d. randomly drawn QAM symbols, (see Figure 1(b)). 

As a measurement setup, we compare our p-bit fixed-point 
IFFT designs with an ideal (double-precision floating point) IFFT.  
The mean-square error (MSE) of the signal is then, following from 
eqn. (1), 

, 
 
which we assume independent of k.  The normalized MSE 
corresponds to the inverse signal-to-noise ratio at the transmitter. 

We created a hardware-accurate MATLAB simulation to 
evaluate the normalized MSE caused by a p-bit fixed-point IFFT, 
and show its results in Figure 4.  In general all error curves 
decrease by about one decade per two bits of resolution.  We show 
errors to 10-5, because below this the error is dominated by the 
signal converters and the communications channel. 

From Figure 4, by comparing the curves at an identical 
NMSE value, we can see that up to two bits of precision can be 
gained by using CS.  Since CS fully avoids overflows, its 
performance will strictly be better than that of the conventional FS 
implementation (we are only making better use of the available 
fixed-point representation).  Our goal is to then capitalize on the 
obvious room for improvement, but without resorting to the 
additional complexity of run-time methods.  The additional 
overhead of CS incurs a non-trivial hardware cost which we 
present later.  Accordingly, any adaptive method that determines 
the optimum bit representation of data at run-time would incur a 
similar cost. 

4.  DIRECTIVE SCALING 
 
Figure 5 illustrates the run-time decisions made by CS while 
computing 100 IFFTs with (a) QPSK and (b) 64-QAM input  

 
Figure 4. NMSE of Forced and Conditional Scaling IFFT1024 

 
 

  
 

(a) n = 1024, QPSK  (b) n = 1024, 64-QAM 
 

Figure 5. Conditional Scaling Decisions per Stage 
 

signals.  Each bar shows the percentage of time the IFFT needed to 
scale in each of the 10 stages.  For example, we see that with 
QPSK inputs, the CS unit always needed to scale in stage 1, but 
rarely in stage 10.  Note that the result for each stage is dependent 
on all previous stages.  After several stages of scaling, the values 
are reduced so they rarely overflow in a particular stage (e.g. 
Figure 5(a), stage 6).  Then, in subsequent stages, due to the 
average growth per stage of , the data begin a pattern where 
they must be scaled in every other stage only.  Notice how the 
pattern begins at an earlier stage for 64-QAM.  This is because the 
average magnitude of the input signal is lower for 64-QAM than 
QPSK.   

As shown in [1], OFDM signals begin to look Gaussian as 
they progress through the IFFT.  At that point, we characterize the 
signals in terms of their standard deviation which correlates with 
the maximum fixed-point representation.  Furthermore, since we 
know the IFFT grows by  per stage, scaling essentially becomes 
predictable with a probabilistic confidence. 
It should also be pointed out that when determining a priori 
whether a particular stage should scale, the following stages will 
be affected by a “ripple effect” compared to the CS behavior.  For 
example, in Figure 5(b), if we fix stage 4 to always scale, we 
antedate one scaling decision for about 20% of trials, which will 
lead them to skipping their next scaling decision instead.  Hence 
stage 5 would no longer need to scale and every data element 
would preserve the least significant bit.  

From these observations we introduce Directive Scaling (DS), 
where we a priori determine for each stage whether or not to scale.  
In order to tolerate the rare occasions where a value grows too 
large in a non-scaling stage, we use saturating adders to clip values 
to their maximum—incurring instead a small saturation error as 
opposed to a 2’s complement overflow error.  For a given system 
we choose a directive strategy, a length log2n vector of scaling 
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Figure 6. IFFT designs comparing scaling techniques 

decisions, where 1 indicates a scaling stage and 0 indicates a 
saturating stage, e.g. [110101...].  The choice of scaling pattern 
depends on several factors, including the bit precision, number of 
(non-zero) IFFT inputs, input signal average magnitude, IFFT size, 
and QAM modulation format.  Given these system parameters, the 
directive is easily found from running simulations at design time, 
producing the scaling graphs like Figure 5. 

Saturating logic must be added to mitigate the rare overflows 
in DS, adding cost to the baseline FS hardware design.  
Nevertheless, the cost is significantly less than the adaptive 
mechanisms used in CS.  Like CS, saturating logic allows choices 
for a threshold value.  DS can use a threshold of ~0.707 to prevent 
overflow in the complex multipliers, or it can use the full fixed-
point boundary, [–1, 1) if saturating logic is included in the 
multipliers in addition to the adders. 

5.  EVALUATION 
 

In this section we evaluate the numerical error and chip area cost 
of IFFT designs using directive scaling, and compare the results 
with forced and conditional scaling.  We find chip area by creating 
RTL Verilog implementations of each design (based on FFTs 
generated with Spiral [8]) and synthesizing them using Synopsys 
Design Compiler targeting a 65nm standard cell library.  Each 
design successfully met all timing constraints at 200MHz, which 
provides sufficient throughput for real-time transceivers (e.g., [3, 
4]).  Then for each design we use the previously mentioned bit-
accurate simulation to find the normalized mean square error 
(NMSE) using 1000 trials with QAM-64 input signals. 

Figure 6 shows the ASIC area (x-axis) vs. numerical error (y-
axis) of several scaling strategies for 256-point, 8-bit IFFTs.  First, 
the black line with triangles shows our baseline: forced scaling 
with 8, 9, and 10 bits of precision (from left to right).  As expected, 
we see that increasing precision reduces error while increasing 
area.  Next, we show two red squares for conditional scaling (with 
two different thresholds).  We observe that these points improve 
upon forced scaling; the 8-bit CS designs provide lower error than 
forced scaling with lower area. 
Next, the diamonds, triangles, and squares show three different DS 
designs.  Each group uses different thresholds (.5, .707, or 1, as 
explained in Section 4).  Within a group, the differences between 
the points correspond to different choices of directive (e.g. 
[11101010] vs. [11110101]).  We see that the DS designs improve 
upon both forced and conditional scaling; they can provide higher 
accuracy at lower cost. 

Figure 7 shows a more in-depth error analysis for a subset of 
designs.  Each point now has error bars representing 1 standard 

 
 

Figure 7. IFFT designs showing stability of error 

deviation in error and a star showing the worst observed error in 
1,000 trials.  Here we show how DS designs are on par with the 
error of CS, yet have more relative stable error.  This is because 
although CS adaptively performs better than FS, occasionally a 
combination of inputs forces additional error.  The stable error 
seen for the FS designs makes sense considering there’s no 
variability when scaling at each stage. 

Although we show DS operating on the IFFT, we have also 
successfully applied the technique to the FFT (receiver).  Here the 
directives are reversed, where the initial stages alternate scaling 
and saturation, while the later stages require scaling throughout.  

6.  CONCLUSION 
 
When generating OFDM signals, the growth of data in the IFFT 
follows a predictable pattern.  This paper introduced directive 
scaling, which exploits this predictability to produce an IFFT 
design that scales data in stages where overflow is likely and 
tolerates occasional overflow elsewhere.  This technique improves 
on forced and conditional scaling, matching or exceeding their 
accuracy at lower cost. 
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