
A LOW-POWER FPGA IMPLEMENTATION OF EYE TRACKING 
 

Tomoaki Ando, Vasily G. Moshnyaga, Koji Hashimoto 
 

Department of Electronics Engineering and Computer Science, Fukuoka University, 814-0180 Japan 
 
 

ABSTRACT 

The use of eye-tracking in energy-constrained applications 
requires systems capable of tracking human eyes without 
consuming large amount of power. In this paper we present a low-
power implementation of real-time non-intrusive eye-tracking by 
single camera. Unlike existing hardware designs, our eye-tracker 
does not restrict the user nor requires computationally expensive 
tools for maintaining high quality tracking. The system provides 
over 88% eye detection accuracy at 8f/s image processing rate. We 
describe the hardware and present the results of its experimental 
evaluation. 
 

Index Terms— eye tracking, FPGA design, low power 

1. INTRODUCTION 
 

With wide popularity of user centric applications, the role of 
smart devices, capable of monitoring human eyes is increasing. In 
traditional applications, such as human-computer interface, 
security, health care, commercial applications, etc., eye tracking 
has not been constrained by energy consumption. Therefore 
research efforts have been focused on delivering non-intrusive, 
non-restrictive and accurate eye-tracking in real-time. However, as 
demands to embed eye-tracking in portable devices grow, the need 
to reduce energy consumption becomes very important.  

Unlike commercial eye-tracking systems, such as [1], powered 
from the wall, battery-operated portable devices have very limited 
energy budget. In order to be used portably, the eye-tracking must 
be optimized to reduce the energy drain from batteries, prolonging 
the operation time between recharges. Though portability is the 
main force behind the push for energy-conscious eye-tracking, 
other eye-tracking applications also require low-energy systems. 
One example is power management of computer display [2]. This 
new technology tracks eyes of display viewers and dims the 
display down to save energy whenever nobody looks at its screen. 
Lowering the energy consumption of eye-tracking system is of 
paramount importance for this application. 
 

2. RELATED RESEARCH 

The non-restrictive non-contact eye-tracking systems proposed 
so far may be grouped into two categories. The first one (e.g. [3-
5]) makes use of infrared (IR) devices and exploits the reflective 
properties of pupils. The eye tracking here is simple, accurate but 
energy consuming due to multiple IR sources. Systems of the 
second group track eyes with the aid of “ordinary” camera in the 

absence of any kind of IR devices. Baluja et al. [6] advocate 
Artificial Neural Networks for eye tracking. One major drawback 
of this system is the number of eye images that are required to 
train the neural network. Also each frame is treated independently, 
which results in processing of redundant data. Smith and Pitas [7] 
use color predicates to locate face and the eyes using minima 
analysis. Due to high sensitivity to lighting conditions, this method, 
however, is not robust. 

Pure hardware systems are typically implemented as 
Application Specific Integrated Circuits (ASIC). Compared to 
other technologies, ASIC have a high operating frequency 
resulting in better performance, low power consumption, high 
degree of parallelism and well established design tools. However, 
a large amount of development time is required to optimize and 
implement the designs. Besides the ASIC solutions are not flexible 
and can not be changed, resulting in high development costs and 
risk. The software implementation of eye tracking in DSP offers 
great deal of flexibility coupled with parallel data processing. The 
drawbacks of microprocessors are both higher power consumption, 
and inferior performance compared to custom ASIC. Configurable 
platforms, such as FPGA, combine the advantages from both pure 
hardware and pure software solutions. More specifically, the high 
parallelism and computational speed of hardware and the 
flexibility and short design time of software. Therefore majority of 
existing face and eye tracking systems [8-10] are implemented on 
programmable devices (FPGA, microcontrollers) integrated with 
embedded software based on multiprocessor platform. In a quest to 
achieve high accuracy of face-detection in real-time, these systems 
run complex video processing algorithms, which require a huge 
number of computations. For example, the system [10] initially 
scales an input 300x300 image into five images of  240x240, 
180x180, 120x120, 60x60, and 20x20 pixels, respectively, and 
then processes them in parallel for histogram equalization, neural 
network (NN) classification, image rotation, brightness and 
contrast adjustment, NN-based face detection, etc. To perform 
over 163million multiply-accumulate operations per image frame, 
the system employs a wide network of processors and memories, 
consuming over 5W of power. 

Up to our knowledge there has been reported so far only one 
system [11], capable of performing real-time eye-tracking with 
less than 200mW power overhead. This system however requires 
the user to be positioned at 50-60cm from camera, which is quite a 
strong limitation.   

In this paper we contribute to the previous research by 
introducing a new FPGA implementation of non-restrictive, non-
contact low-power system capable of performing robust, real-time 
tracking of human eyes up to 1.5m distance. In the next section we 
describe the eye-tracking algorithm and its implementation in
FPGA. Section 4 shows the results of experimental evaluation. 
Section 5 presents conclusions. 

The work was sponsored by The Ministry of Education, Culture, Sports, 
Science and Technology of Japan under the Knowledge Cluster Initiative 
(The 2nd Stage) and Grant-in-Aid for Scientific Research (C) No.21500063

1573978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



 

3. PAGE TITLE SECTION 

3.1. The eye-tracking algorithm  

The system takes a gray-scale image produced by camera and 
outputs positions of human eyes. The eye-tracking algorithm has 
two distinctive features. First, it uses new seven-segment 
rectangular (SSR) template (see Fig.1) to track the between-the-
eyes point (BTE), not eyes). In contrast to conventional six-
segment rectangular template [10], the SSR contains an extra 
region (marked by 7 in the figure) that reflects the area between 
mouth and nose. Similarly to areas 1 and 3, this region is usually 
darker than the nose area 5 and therefore can be applied used to 
discriminate false candidates from the true BTE pattern. Second, 
the algorithm does not require computationally expensive tools 
(such as, Ada-Boost, SVM, Neural Networks, etc.) for BTE 
candidate selection. The false candidates are discriminated based 
on a set of simple rules that reflect bright-dark relations between 
regions in the BTE template.  

Fig.2 shows flowchart of our eye-tracking algorithm. For the 
first frame or any frame in which eye locations are unknown, we 
extract the foreground image (which contains the face) and scan it 
to locate the BTE and eyes; otherwise we scan a small area (S) of 
±8 pixels around the eye positions, found for the previous frame. 
For the chosen area, the algorithm first computes the integral 
image and then scans it by the Seven-Segment Rectangular to 
select the BTE candidate. If the BTE candidate is found, the 
system uses the BTE as a starting point to locate eyes. If eyes are 
detected, the user is assumed to be looking at screen; else it is not. 
Below we discuss the main steps in details. 
 
3.1.1. Foreground extraction 

The goal of this task is to reduce search area in the input image. 
Because a human face is not static and moving, we search only 
foreground area, which contains human face by default if any. The 
image foreground is extracted by computing difference between 
the current image frame Ft and the previous frame Ft+1 that is larger 
than a threshold, T [12], i.e.| Ft - Ft-1| >T1. 

3.1.2. Integral image computation 

The integral image representation I(x,y) is computed in one 
pass over the image i(x,y) based on the following equations [13]:  

S(x,y)=S(x,y-1) +i(x,y);           (1) 
I(x,y)=I(x-1,y)+S(x,y),             (2) 

where S(x,y) is the cumulative row sum, S(x,-1)=0, I(-1,y)=0.  

Computing the sums is simple; it requires only 1 addition, 2 
subtractions and 4 lookups to calculate the sum of one SSR 
segment. For example, the sum of pixels within region 5 of Fig.1 is 
defined as: S5=I(x2,y2)+I(x1,y1)-I(x2,y1)-I(x1,y2). The produced 
integral image is scanned by the SSR rectangle of pre-defined size 
to locate the BTE pattern i.e. face candidate.  

3.1.3. BTE pattern detection 

To detect a BTE pattern in an image, we scan the SSR over the 
search area in a row-first fashion. At each scan location, the 
integral sum (Sj) of pixel values in each rectangular segment (j) is 
compared to the integral sums of other segments to select the true 
BTI candidate. (For the comparison, the integral sums of segments 
2, 5 and 7 are defined from areas shown by plotted line in Fig.1). 
The comparisons are done as follows: 

S1 < S2   &  S1  < S4     (3) 
S3 < S2   &  S3  < S6    (4) 
S4 < S5   &  S6  < S5       (5) 
S7 < S5   &  S7  < S4 || S7  < S6    (6) 
S3,6 <S2,5 ||  S1,4 <S2,5   (7) 
S2 < S5 +T2  || S3,6 <S2,5+T3 || S1,4<S2,5 +T4,  (8) 

Here Si,j = Si + Sj; T2, T3 and T4 are the thresholds.  
The criteria (3-8) reflect characteristic features of face geometry, 

i.e. the nose area (see regions 2 and 5 in Fig.1) is brighter than eye 
area (regions 1 and 3 respectively) and the mouse area (region 7); 
and the eye area is relatively darker than the cheekbone area 
(regions 4 and 6) (including nose). If the above criteria (8-13) are 
satisfied, the current SSR is considered to be a candidate for the 
BTE pattern (i.e. face candidate).  

To verify the finding, we evaluate the bright-dark patterns in the 
lower half of segments 1 and 3 of the BTE region candidate. The 
upper half in each of these segments corresponds to eyebrows or 
hears (see Fig.3, a) and therefore ignored. Let E1,E2 and E3 be 
three vertical (and horizontal) areas in the low half of segment (1 
or 3) as shown in Fig.3(b)-(c) and R1,R2 and R3 be the average 
values of pixels in these areas. Then the candidate is counted as 

1

4

3

6

2

5

7

(X,Y)

Fig.1. An illustration of the seven-segment rectangular 
template 

yes

no

yes

Scan for BTE pattern

Next frame

Eyes found?

Compute integral image of A

no

Found?

Extract area (A) 
around the eyes

no

Extract foreground area (A)

yes

Eye locations 
known?

Find eyes
yes

Scan
complete?

no

Save eye locations

no Another
scan?

Resize SSR 

Eyes not found

yes

no

yes

Scan for BTE pattern

Next frame

Eyes found?

Compute integral image of A

no

Found?

Extract area (A) 
around the eyes

no

Extract foreground area (A)

yes

Eye locations 
known?

Find eyes
yes

Scan
complete?

no

Save eye locations

no Another
scan?

Resize SSR 

Eyes not found

 
 

Fig.2. The eye-tracking algorithm

1574



true BTE pattern if R4<R5 & R6 <R5. Otherwise, the search 
continues. If no BTE candidate is found, we scale down the size of 
the SSR by a factor of 1/ 2 and repeat the search. If no BTE found 
even for the smallest SSR size, we look for another face area if any. 
If no more areas to search, the user is considered neither present in 
front of the camera/display nor viewing the display. Any true BTE 
candidate is supplied to eye detection. 

3.1.4. Eye detection 

The eye localization procedure is organized as a scan over the 
grey-scale representation of region E2 in segments 1 and 3 of the 
BTE pattern for a continuous set of dark pixels (i.e. whose value is 
lower than a given threshold). For each detected region we then 
compute the circumference ratio D= 4* *A/L2, where A is the area 
of region, and L is the circumference length of the region. Since 
the higher D corresponds to a more true circle, we select those 
regions which have 0.3<D<1.0 and 30<A<150. Fig.3 (d) illustrates 
the result. 

 
3.2. System implementation 

The system was synthesized from Verilog HDL using Synopsis 
Design Compiler and implemented on a single board (DE2-70) 
which contains Analog-Digital Convertor (ADC), two SDRAMs of 
32MB each, one 2MB SSRAM and Altera Cyclone-II 2C70 FPGA. 

Fig.4 outlines system architecture. The pattern here represents 
FPGA functionality. The board is connected to CCD image sensor 
(MTV-2510EM) through parallel I/O interface. The digitized input 
data, which initially is written to SDRAM, is assembled by 
Formatting and capture units into image frame of 320x240 pixels 
in size and saved temporally in SSRAM. The frame processing is 
done by the Foreground extractor, the Integral imager, the BTE 
locator and the Eye locator each of which implements a 
corresponding step described in subsections 3.1.1~3.1.4, 
respectively. Overall system control is done by CONTROLLER, 
while memory accesses are managed by local controllers. The 
system operates at 27MHz frequency and 3.3V external voltage. 
The eye-tracking implementation in FPGA consumed 8878 logic 
cells or 13% of FPGA cell budget, 28 multipliers and 53184 bits of 
SRAM. 

Table 1 and 2 summarize the design characteristics in terms of 
clock cycles, processing time and power. The power consumption 
was evaluated by Altera Quartus II Power Analyzer from the logic 
synthesis results. As measurements show, the system requires 
118ms to process a frame at 27MHz clock frequency; i.e. 8 fps 
image processing rate. The total power consumption of the eye-
tracking design is 375mW. 

 

4. EVALUATION 
 

To evaluate accuracy of the eye-tracking system, we ran ten 
different tests each of which conducted by a different user in 
typical conditions of PC usage. Namely, the users were located at 
the distance from 40cm to up to 1.5m from display/camera; the 
room illumination was relatively good; when looking at display, 
the users faced camera frontally. In the experiment, the users were 
asked to conduct seven behavioral patterns: face the camera with 
eyes open and closed, face turned up and down, face turned to the 
right and to the left, and leave the PC. Each pattern was 5 sec long 
and repeated twice by each user.  

Fig.5 illustrates the detection results displaying the locations of 
true BTI and eyes. The white rectangle in each image outlines the 
area searched. Experiments showed that ordinary pairs of glasses 
have no bad effect on the performance. The system correctly 
distinguishes open and close eyes tracking the eyes correctly when 
the face inclination in vertical or horizontal directions is less than 

 

 

Fig.3. An illustration of eye detection: image corresponding to 
segment 3 of SSR (a); the image partition in vertical direction 
(b) and horizontal direction (c); the result of eye detection (d)  

 

(a) 

(b) 

(c) 

(d) 

camera

ADC Input 
interface

SDRAM
controller

SDRAM (32MBx2) SSRAM (2MB)

SSRAM
controller

FormattingCapture

Foreground
extractor

Integral 
imager

BTE 
locator

Eyes 
locator

LCD
controller

Function
settings

FPGA 
board

C
O
N
T
R
O
L
L
E
R

u0
u1

camera

ADC Input 
interface

SDRAM
controller

SDRAM (32MBx2) SSRAM (2MB)

SSRAM
controller

FormattingCapture

Foreground
extractor

Integral 
imager

BTE 
locator

Eyes 
locator

LCD
controller

Function
settings

FPGA 
board

C
O
N
T
R
O
L
L
E
R

u0
u1

Fig.4. System architecture

Table 1: Processing time 
FPGA Unit Clock cycles 

required 
Processing 
time (ms) 

Image capture/formatting 419,086 15.5 
Foreground extractor 986,518 36.5 

Integral Imager 494,150 18.3 
BTE and Eye locators 1,312,400 48.6 

Total 3,212,154 118.9 

Table 2: Power consumption 
Power mW 

Dynamic 76.78 
Static 155.60 
I/O 146.07 

Total 375.45 

 

1575



15°. With the larger inclination, the misdetection rate increases. 
Also, in some face orientations, frame of pair of glasses can hide a 
part of eye ball, causing the system to loose the eye.  

Table 3 summarizes the results in terms of the number of frames 
for which the eye-tracking was successful. The case 1 in the table 
reflects the number of successes for true eye gazing, and therefore 
actually can be interpreted as the true-positives. All the other cases 
reflect situations when the users are not looking at camera. 
Therefore successes in these cases reflect “no eyes” detection. (i.e. 
false negatives). Although the detection ratio depends on the case, 
the accuracy of the decisions is quite high: more than 88% 
accuracy.  

 Table 4 compares our implementation with the related design 
[11]. Although our system consumes a little more power than the 
prior design, it operates on larger frames enabling user tracking at 
larger distances.  

 
5. CONCLUSION 

 
In this paper we presented a prototype FPGA design for detecting 
and tracking eyes of computer user. Experiments show that the 
design is capable of detecting eyes in real-time with 88% accuracy 
while consuming 375mW of power. However, this power figures 
can be reduced even further should custom design of both chip and 
board performed. We are currently working on custom hardware 
design.  
 

6. REFERENCES 
 
[1] Eye Tracking by Tobii, available from www.tobii.com 
[2] V.G.Moshnyaga, The use of eye-tracking for PC Energy management, 

Proc. ETRA 2010, pp.113-116, 2010 
[3] T.Ohno, N.Mukawa, S.Kawato, Just blink your eyes: a head-free gaze 

tracking system. Proc. CHI 2003, pp.950-951. 
[4] K.R.Park, J.Kim, Real-time facial and eye gaze tracking system, 

IEICE Trans. Inf.&Syst., vol.E88-D, no.6, pp.1231-1238, June 2005. 
[5] Q.Ji, Z.Zhu, Eye and gaze tracking for interactive graphic display. 

ACM Proc. Int. Symp. On Smart Graphics, pp.2002. 
[6] S.Baluja and D.Pomerleau, Non intrusivegaze tracking using artificial 

neural networks, Technical report CMU-CS-94-102. 
[7] P.Smith et al, Monitoring head/eye motion for driver alertness using 

one camera. Proc. Int.Conf. Pattern Recognition, 2000.  
[8] T.Theochrides, G.Link, N.Vijaykrishnan, et al.Embedded Hardware 

Face Detection, EEE Int. Conf. VLSI Design,, 2004.  
[9] V.Jeanne, F-X.Jegaden, R.Kleihorst, et al, “Real-Time Face Detection 

on a “Dual-Sensor” Smart Camera Using Smooth-EdgesTechnique”, 
Workshop on Distributed Smart Cameras, 2006. 

[10] S.Kawato, N.Tetsutani, K.Osaka, Scale-adaptive face detection and 
tracking in real time with SSR filters and support vector machine, 
IEICE Trans.Inf.&Systems, E88-D, no.12, pp.2857-2863, Dec.2 005 

[11] V.G.Moshnyaga, K. Hashimoto, T.Suetsugu and S.Higashi, A 
Hardware System for Tracking Eyes of Computer user, Proc. of the 
Int. Conf. Computer Design, pp.125-130, 2009. 

[12] D.Douxchamps, N. Campbell, Robust real time face tracking for the 
analysis of human behavior, in Machine Learning for multimodal 
Interaction, LNCS 4892, pp.1-10, 2008. 

[13] P.Viola, M.Jones, Rapid Object Detection Using a Boosted Cascade 
of Simple Features, IEEE Conf. on Computer Vision and Pattern 
Recognition, 2001 

     

   
Fig.5. Examples of eye tracking images  

Table 4: Comparison 

Design FPGA Freq. 
(MHz) 

Frame 
size 

 Power 
(W) 

Tracking 
distance 

 Frame 
Rate

Accuracy
(%) 

[11] Xilinx 
XC3S 
250E 

48 160x 
120 

150 50-60 
cm 

10 88% 

Ours Altera 
Cyclone 
II 2C70 

27 320x 
240 

375 40-150 
cm 

8 88% 

 

Table 3: Power consumption 

Case State Number of 
success 

Accuracy 
(%) 

1 Frontal face, open eyes 186 89 
2 Frontal face, close eyes 185 88 
3 Face turned right  206 98 
4 Face turned left 206 98 
5 Face turned up 189 90 
6 Face turned down 189 90 
7 No user in front of camera 210 100 

 

1576


