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ABSTRACT

As satellite signals, e.g. GPS, are severely degraded indoors or not
available at all, other methods are needed for indoor positioning.
In this paper, we propose methods for combining information from
inertial sensors, indoor map, and WLAN signals for pedestrian in-
door navigation. We present results of field tests where complemen-
tary extended Kalman filter was used to fuse together WLAN signal
strengths and signals of an inertial sensor unit including one gyro
and three-axis accelerometer. A particle filter was used to combine
the inertial data with map information. The results show that both
the map information and WLAN signals can be used to improve the
pedestrian dead reckoning estimate based on inertial sensors.

Index Terms— Dead reckoning, Indoor environments, Kalman
filters, Particle filters, Inertial navigation

1. INTRODUCTION

While GPS provides pedestrian positioning solution for outdoor en-
vironments, the optimal strategy for pedestrian indoor positioning is
still an open issue, as the indoor environment severely degrades the
accuracy of satellite positioning or makes it totally impossible. Sev-
eral alternative information sources for pedestrian indoor position-
ing have been proposed. Microelectromechanical systems (MEMS)
based sensors have been used to obtain dead reckoning estimate of
the position, which is based on previous known position together
with distance traveled and direction of travel [1, 2, 3, 4]. Rela-
tively short range radio communication signals, such as WLAN or
Bluetooth signals have been used to obtain indoor position estimates
[5, 6, 7]. The use of map information is common practice in car navi-
gation [8], and similar principles have also been proposed for indoor
positioning [9].

All the mentioned approaches for indoor positioning have their
strengths and weaknesses, and often a weakness of one system is
strength of another, so that combination of several sources brings
better performance than a single source alone. To combine informa-
tion from several sources, a suitable data fusion algorithm is needed.

In this paper, we propose nonlinear Bayesian filters for fusing
pedestrian dead reckoning (PDR) based on MEMS sensors with
WLAN based positioning, indoor map information, or both. The
sensor unit includes a heading gyro and a 3D-accelerometer. For the
fusion of PDR with WLAN positioning we propose Complementary
Extended Kalman Filter (CEKF). For the fusion of map information
with other measurements, we propose a particle filter.

In many reports that consider indoor positioning, the field tests
have been conducted in office environments consisting of corridors
and rooms. We present results of field test conducted in a univer-
sity library, where radio signal propagation pattern is different; there
are few walls that totally block the signals while at the same time

there are lot of obstacles that distort the signal propagation caus-
ing either non-line-of-sight conditions or strong signal attenuation.
However, these obstacles provide lot of map information for data
fusion algorithm. In the following sections we describe the models
and algorithms and give positioning results based on real data from
a pedestrian test walk.

2. INFORMATION SOURCES

The length of the distance traveled can be obtained by performing
double integration of an accelerometer signal. Unfortunately, this
approach suffers from unbound error growth due to, e.g., tilt errors of
the sensor unit. In pedestrian navigation such errors can be avoided
by using step detection algorithm and step length estimation based
on accelerometer signal pattern [2, 3, 10].

To avoid the effect of the tilt in the acceleration signal, we use
the norm of the measured acceleration for step detection and step
length estimation since the norm is insensitive to the orientation of
the sensor unit. The procedure for step detection consists of the fol-
lowing steps: (1) Low pass filtering and resampling of the signal
to the frequency of 20-50 Hz, (2) Computation of the norm of ac-
celeration components, i.e. a (t) =

√
ax (t) + ay (t) + az (t), (3)

Detection of a step start when the acceleration norm crosses g (grav-
itational acceleration) so that it is followed by rise rate and peak
height that exceed the preset limits, (4) Detection of a step end at the
start of the next step or 0.9 s after the previous step start, which ever
happens earlier. The use of acceleration norm for step detection is
illustrated in Fig. 1(a).

To obtain the calibration parameters for presenting the step
length as a function of step frequency [1], ten sets of walking data
were collected in a straight corridor using an accelerometer triad.
The straight leg of a known length was walked ten times. To obtain
step samples with different step lengths, the walker tried to adjust
the walking speed to normal, slower than normal, slow, faster than
normal, and fast, as it is known that the step length is also a function
of the walking speed [1]. With the data, the steps were detected from
the acceleration norms and step intervals were determined. Using
step intervals averaged over each walk, the number of detected steps
per walk, and the known length of total traveled distance per walk,
a linear fit can be found between average step frequencies and step
lengths of each test data set, as shown in Fig. 1(b).

The sensor based PDR estimate is computed by starting from
initial coordinates, x0, y0, and initial heading angle ψ0. The heading
and horizontal coordinates are propagated by⎡

⎣ ψk

xk
yk

⎤
⎦ =

⎡
⎣ ψk−1 + ωkΔtk
xk−1 +Δsk cosψk

yk−1 +Δsk sinψk

⎤
⎦ (1)

where ωk is the angular rate measurement by the gyro, Δsk is the
distance traveled on the step with index k, and Δtk is the length
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(a) Step detection based on acceleration norm.
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(b) Step length calibration using test data sets.
Observations shown with circles.

Fig. 1. Estimation of travelled distance

of the sample interval, which in this case is the same as the step
interval; Δtk varies according to the walking style and speed of the
pedestrian.

The utilization of an indoor map for pedestrian navigation dif-
fers from the way street maps are used in car navigation. In car
navigation, the roads represent the possible locations of the car, and
the task of the positioning algorithm is to use some clever method
to force the position estimate to the most probable road segment [8].
In indoor navigation, instead of defining possible routes the indoor
map gives information about impossible locations and movements:
the positioning algorithm uses information about walls and obstacles
that the pedestrian is not able walk though [9]. These are presented
by line segments defined by the coordinates of their starting and end-
ing nodes.

WLAN signals can be used in several ways to estimate position.
In this paper, we use WLAN fingerprinting [5, 11], where exper-
imentally defined radio map is generated to locally model the re-
lation between the user position and strengths of the WLAN signals
received by the user. The implemented probabilistic estimation algo-
rithm uses WLAN fingerprints which include histogram approxima-
tions of probability density functions of the WLAN signal strength
[11].

3. PROPOSED ALGORITHMS AND MODELS

In this paper, we propose a complementary EKF (CEKF), i.e., an
EKF implemented in complementary mode [12] for fusing PDR and
WLAN positioning estimates; complementary filtering is useful in
combining redundant measurement data. We propose a CEKF con-
figuration where the filter uses PDR measurements to propagate the
state of the filter and WLAN based position estimates as measure-
ment updates of the filter.

A simple process model with errors modeled as white noise is
applied, which does not require special error states; the elements
of the state vector xk are the following: x1 = heading, x2 = x-
coordinate, and x3 = y-coordinate, and therefore the state propa-

gation resembles the dead reckoning presented in (1). The filter is
started from initial estimate x̂0 and initial covariance P0, which are
set according to the best available estimate about the initial position
and the uncertainty of the position information. The state is propa-
gated by using

x̂
−

k = x̂k−1 +

⎡
⎣ ωkΔtk

Δsk cos x̂1k−1

Δsk sin x̂1k−1

⎤
⎦ (2)

where x̂k−1 denotes the posterior estimate after the measurement
update using the k−1th measurement samples, while x̂−

k is the prior
estimate for kth time step. The definitions of ωk, Δsk, and Δtk are
the same as in (1) and x̂1k−1

is the previous posterior estimate of
heading. The state matrix Fk, needed for covariance propagation, is
obtained by taking a partial derivative of (2):

Fk =

⎡
⎣ 1 0 0

−Δsk sin x̂
−

1k
1 0

Δsk cos x̂
−

1k
0 1

⎤
⎦ . (3)

As the effect of the step length uncertainty is multiplied by sin and
cos functions of the heading, the state noise Qk is also approximated
on every propagation step:

Qk = diag

⎛
⎝
⎡
⎣ Vω

cos2
(
x̂−
1k

)
VΔs

sin2
(
x̂−
1k

)
VΔs

⎤
⎦
⎞
⎠ (4)

where Vω is the variance of angular rate measurement and VΔs is
the variance of step length estimate. The covariance propagation to
obtain the prior covariance P−

k is now

P
−

k = FkPk−1F
T
k +Qk, (5)

where Pk−1 is the posterior covariance from the previous time step.
The measurement input of the filter is zk = [xWk

yWk
]T , consisting

of the x and y coordinates estimated using WLAN fingerprints, and
measurement matrix is

H =

[
0 1 0
0 0 1

]
.

Now the equations for measurement update of state x̂k and covari-
ance Pk are

Kk = P−

k H
T
(
HP−

k H
T +R

)
−1

x̂k = x̂−

k +Kk

(
zk −Hx̂−

k

)
Pk = (I3x3 −KkH)P−

k

(6)

where R is the covariance of WLAN based coordinate estimates and
I3x3 is identity matrix.

The map information about the walls and obstacles is difficult
to formulate so that it could be applied with EKF. In particle filters,
this kind of information can be taken into account easily: after each
propagation step the algorithm can check whether the particles ended
into obstacles or out of the room through the walls. If they did, their
weight can be set to zero so that in the next resampling they will not
survive.

In this paper, we propose a bootstrap particle filter [13] where
the particles are propagated using the same equation (2) as with
CEKF, except that now the noise components of angular rate mea-
surement and step length estimate are simulated using a random
number generator and then added to the particle states. The noise
components are generated using the same variance values for angu-
lar rate and step length as were used in CEKF; also the likelihoods of
the particles are evaluated using the same measurement variances for
WLAN based x and y coordinate estimates that were used in CEFK.
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Fig. 2. WLAN based position estimates shown with triangles. Tran-
sitions between consecutive estimates shown with narrow dotted
lines.

4. FIELD TESTS AND RESULTS

A test walk was conducted in the library of the Tampere University
of Technology. The test route consisted of four loops in the library
and it took 17 min to walk it. In the library only the outer walls to-
tally block radio signals, but there are lot of book shelves that cause
either strong attenuation or non-line-of-sight conditions for the ra-
dio signal propagation. On the other hand, as the book shelves are
obstacles that the pedestrian cannot walk though they provide useful
map information for the particle filter.

The inertial sensor unit used in pedestrian navigation test was a
MEMS based sensor described in [14]. It includes an accelerometer
triad and one gyro. In the test, the sensor unit was attached to the
back of the test walker and aligned so that the sensitive axis of the
gyro was vertical, i.e., it was able to measure heading changes.

The WLAN signal strengths were collected using a mobile hand-
set, which outputs WLAN scan results at 2.3 s intervals. The position
estimates computed from WLAN signal strengths that were collected
along the test walk are shown in Fig. 2. From the figure we can see
that the estimates are not evenly spread along the route, but rather
concentrated in the center of the library area. The average position
error is about 12 m.

The result of the unaided PDR estimate is shown in Fig. 3. It
can be seen that during the first loop the traveled distance gets longer
and the heading starts to get distorted. After the first loop, the three
following loops seem to be quite similar in size and orientation. The
maximum errors are 5 m in distance and 24◦ in heading angle.

The result of CEKF processing of the PDR and WLAN based
position estimates is shown in Fig. 4. The CEKF was initialized
with the same initial heading and coordinates as the unaided PDR
estimate. It can be seen that CEKF can correct some of the skewness
in PDR loops. The maximum errors can be estimated as 4 m in
distance and 16◦ in heading.

In the first particle filter test, the filter was used to fuse PDR and
map information, while in the second test, it was used to fuse also
WLAN estimates with PDR and map information. The number of
particles used in the tests was 500. The particle states were initial-
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Fig. 3. Unaided pedestrian dead reckoning.
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Fig. 4. Complementary EKF using PDR and WLAN data.

ized with the same initial values as the CEKF. The results of the tests
are shown in Figures 5 and 6. The plotted particle filter track is the
Minimum Mean Square Estimate (MMSE) computed from particle
positions at each sampling instance. The maximum errors estimated
are less than 3 m in distance and 12◦ in heading for both particle fil-
ters. However, the estimated track in Fig. 6 seems to follow the true
track better than the track in Fig. 5, especially in upper and lower
edges of the route. The reason for this can be seen in Fig. 2: there are
many correct WLAN based position estimates available just before
entering to these route segments, and therefore the WLAN estimates
are able to improve the result.

5. CONCLUSIONS

In this paper, we proposed methods for combining information from
inertial sensors, indoor map, and WLAN signals for pedestrian in-
door navigation, and presented field test results obtained using the
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Fig. 5. Particle filter using PDR data and map information.
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Fig. 6. Particle filter using PDR and WLAN data and map informa-
tion.

proposed algorithms. For the fusion of the PDR with WLAN po-
sitioning we proposed complementary Extended Kalman Filter and
for fusion of the map information with other measurements we pro-
posed a particle filter.

The inertial sensor unit used in these tests performed relatively
well even as an unaided PDR system. However, fusing it with ei-
ther WLAN positioning or map information improves accuracy. The
quality of the WLAN position data is quite poor. Still the WLAN
based position estimate includes some useful information to the data
fusion filter. The WLAN based positioning is also complementary
with map information: map information is relatively useless in open
areas, where walls and obstacles cannot guide the particles, while
in areas with high density of obstacles this information is frequently
available. Just the opposite, in areas dense with obstacles there is lot
of disturbances present in WLAN signals which distort even a posi-
tioning algorithm using fingerprints, while in open areas the quality
of WLAN based position estimate is better.
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