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ABSTRACT 

 
In this paper, a hierarchical resampling (HR) architecture has been 
presented for distributed particle filters (PFs). The proposed archi-
tectures decomposes the resampling step into two hierarchies, of 
which the first one, called intermediate resampling, is conducted 
consecutively among processing elements (PEs) the moment new 
particles and their weights are generated by each PE, and the second 
one, named unitary resampling, is performed sequentially after the 
whole intermediate resampling procedure and shared by all PEs. 
Compared with traditional distributed architectures, the HR archi-
tecture eliminates the particle redistribution step, and has such ad-
vantages as short execution time, high memory efficiency and well 
scalability. 
 

Index Terms—Architecture, distributed particle filters, hierar-
chical resampling, latency, high memory efficiency 
 

1. INTRODUCTION 
 
Particle filters (PFs) have achieved, since their original introduction 
[1], great popularity as a powerful approach in addressing nonlinear 
and/or non-Gaussian dynamic systems modeled in state-space [2–
6]. It is a Monte Carlo simulation and Bayesian estimation based 
methodology, where the basic idea is a recursive approximation of 
relative posterior probability distributions with a set of discrete 
random samples.  

Of the three steps involved in general PFs, i.e. sampling, weight 
calculation and resampling, the last one requires a joint processing 
of all particles due to its sequential nature, and thus affects signifi-
cantly the execution time. Various architectures have been explored 
for centralized resampling [7–10], though, it remains a bottleneck 
to implement resampling efficiently for distributed PFs. Therefore, 
development of a resampling architecture suitable for distributed 
PFs becomes the key to accelerate further the filter processing, and 
has gained considerable interest in the literature [11–13].  

Despite the improvement in speed, current distributed implemen-
tations of PFs suffer from the following potential major drawbacks: 

1) Particles need to be redistributed after resampling in each pro-
cessing element (PE), which is non-deterministic and accordingly 
limits the hardware scalability. 

2) The whole realization demands too much hardware cost, 
especially the memory resource. 

3) The accuracy of estimation is no longer guaranteed due to the 
trade-off between the performance and the complexity. 

In this paper, we propose a hierarchical resampling (HR) scheme 
and the corresponding architecture for distributed PFs. In HR, the 
resampling step is decomposed into two hierarchies. The first one, 
called intermediate resampling, is conducted continuously among 
PEs the moment new particles and relevant weights are generated 
by each PE; the second, named unitary resampling, is performed 
after the whole intermediate resampling procedure and shared by 
all PEs. HR has similar resampling result to standard resampling in 
statistics, yet it results in a hardware architecture for distributed 
PFs with a couple of encouraging features: first, resampling is 
decomposing into two more granular hierarchies, both of which can 
be realized in a pipeline fashion; second, redistribution of particles 
is eliminated, which leads to a simple control scheme and a well 
architecture scalability; third, unitary resampling has fewer weights 
to handle and can be shared by all PEs, which reduces significantly 
the execution time as well as the hardware cost. 

The remainder of the paper is organized as follows. Section 2 
reviews briefly the main existing distributed resampling schemes, 
followed by the HR scheme and its corresponding architecture in 
Section 3. Section 4 analyzes the performance of the architecture 
in terms of execution time, memory utilization, as well as scala-
bility, and Section 5 concludes the paper. 
 

2. DISTRIBUTED RESAMPLING SCHEMES 
 
The most challenging issue in distributed PFs is how to redistribute 
particles among PEs after resampling. Such redistribution results 
from the random distribution of particle weights, and is necessary 
to balance the workload of each PE in the next recursion. Current 
distributed resampling schemes mainly include two strategies: re-
sampling with proportional allocation (RPA) and resampling with 
non-proportional allocation (RNA) [11]. 

RPA is such a method that the number of particles each PE 
replicates is firstly calculated, known as inter-resampling, and then 
resampling is performed in parallel inside each PE, known as intra-
resampling. The main problem of RPA is the unpredictability in 
execution time of particle redistribution after intra-resampling due 
to the randomicity of particle numbers in each PE. Besides, the 
sizes of memories must be designed for the worst case for each PE, 
which increases the total memory requirement sharply. The concept 
of RPA is shown in Fig.1 (a), where K = 4 PEs and N = 200 
particles are employed, and a central unit (CU) is used for system 
control. In this case, 30 surplus particles need to be transferred 
from PE0, and 20 from PE3. 

In RNA, on the other hand, the same number of particles is  
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Fig.1. Concepts of (a) RPA and (b) RNA. 

 
resampled in each PE, and then partial particles are exchanged in a 
deterministic way among neighboring PEs. The amount of particles 
sent between PEs is fixed and defined in advance. In spite of the 
simplicity, RNA has a inherent problem that the performance of 
estimation can no longer be guaranteed since particles have vari-
ous weights both inside and among PEs after redistribution. The 
concept of RNA is shown in Fig.1 (b), where 50 particles are 
resampled in all PEs and 20 particles are transferred between adja-
cent PEs. 
 

3. HIERARCHICAL RESAMPLING 
 
In this section, a hierarchical resampling method is introduced. 
Differing from common distributed resampling schemes that start 
resampling after all particles and weights are generated, HR decom-
poses the resampling step into two hierarchies and starts as soon as 
the first batch of particles and their weights are prepared in PEs. 
 
3.1. Hierarchical Resampling Scheme 
 
Consider a distributed implementation of PFs with N particles and 
K PEs. The sampling step and weight calculation step are para-
llelized in PEs. When K new particles and weights are generated 
simultaneously, a resampling process is conducted with the resam-
pled particles transferring to each PE; meanwhile the sum of the 
weights is stored as the collective weight for each resampled 
particle. The above operation is repeated N/K times till all N 
particles are processed and N/K collective weights are preserved. 
This procedure constitutes the first hierarchy of HR and is called 
intermediate resampling as it is performed on the basis of only a 
part of particles and weights each time. Afterwards, a unitary 
resampling step, the second hierarchy of HR, is started which 
resamples particles in each PE according to the collective weights. 
Since particles in the same storage positions of each PE are in fact 
resampled ones with equal weights, the unitary resampling can 
then be shared among all PEs. An overall description of distributed 
PFs with the HR scheme is given by Algorithm 1. 

In standard resampling, e.g. systematic resampling, a particle xi 
t , 

representing the ith particle generated at time index t, is resampled 
with a replication factor (replicated times) ri 

t  that is proportional to 
its weight wi 

t . A mathematical representation can be expressed as  
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Algorithm 1: Distributed PFs with hierarchical resampling 
for i = 1 : N/K 

do in parallel in K PEs 
Sample a new particle xi, j 
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Calculate the collective weight: 
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t  , wi, j 
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for j = 1 : K 
Send the jth resampled particle back to PEj 

end for 
end for 
Resample particles according to the N/K collective weights for 
each PE 

 
where E(·) is the expectation function. In HR, a particle x i, j 

t  , 
standing for the ith particle generated by PEj at time index t, is first 
resampled by intermediate resampling which gives its intermediate 
replication factor r i, j 

t  as 
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denotes the collective weight, and then resampled by unitary re-
sampling which determines the expectation of its final replication 
factor ri, j 
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It can be seen that for a specific particle, the expectation of its 
replication factor in HR is identical to that in standard resampling. 
Indeed, a particle weight is utilized here in such two respects as 
follows: it is first used directly for intermediate resampling of K 
particles, and then employed indirectly for unitary resampling of 
N/K particles in each PE. This ensures a lossless performance in 
HR in statistics. 
 
3.2. Hierarchical Resampling Architecture 
 
The overall architecture of HR based distributed PFs is shown in 
Fig.2, where K PEs are connected to the HR unit. For illustration,  
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Fig.2. Architecture of HR based distributed PFs. 

 

 
Fig.3. Architecture of intermediate resampling. 

 
K = 4. Particles propagated per cycle in each PE, denote as p0~p3, 
are resampled in the intermediate resampling unit with a pipeline 
fashion according to their weights w0~w3 based on the concept of 
systematic resampling. Resampled particles are then sent back to 
the particle state memory of each PE; meanwhile the weight sum is 
stored in the collective weight memory in the unitary resampling 
unit. When N/K collective weights are prepared, unitary resampling 
starts and performs in a way the same as that in the centralized 
implementation. The final resampling outputs are shared by all PEs 
and depend on the architecture used for unitary resampling, e.g. the 
outputs are particle indexes and replication factors if the residual 
systematic resampling (RSR) based architecture [7] is used. 

Fig.3 shows the architecture of intermediate resampling accor-
ding with Fig.2. Before resampling, all temporary sum of weights 
(TSW), i.e. the sum of the first k (1  k  4) weights, are calculated. 
At the same time, the weight mean, denoted by S/K where S is the 
sum of all weights, is provided to update the temporary value of the 
resampling function U. In each intermediate resampling stage, as is 
shown in Fig.4, all TSWs are compared with the current Ui (0  i   

 
Fig.4. Architecture of one intermediate resampling stage. 

 
 

 
Fig.5. Timing of the HR based architecture for distributed PFs. 

 
3) and one resampled particle Pii is then selected by the subscript 
of the first TSW that is no less than Ui. After K stages, each resam-
pled particle is transferred to the corresponding PE. 

PE carries out the sampling and weight calculation steps, of 
which the architecture is cooperating with that of unitary resamp-
ling, see [7]. 
 

4. PERFORMANCE ANALYSIS 
 
The performance of the proposed architecture is analyzed in this 
section from the aspects of execution time, memory utilization and 
scalability. Besides, the chaotic Lorenz system model (CLS) [14] 
is simulated as a case study. 

The timing of the HR based architecture is illustrated in Fig. 5, 
where LS, LW, LI and LU represent the startup latencies of sampling, 
weight calculation, intermediate resampling, and unitary resampling, 
respectively. As the first resampling hierarchy is pipelined with the 
sampling and weight calculation steps, the execution time of one 
whole filter iteration is much close to that of a centralized architec-
ture with N/K particles. If we use L to refer to all startup latencies 
which are limited and can be neglected when N/K is large enough, 
the total cycle time of the proposed architecture can be given as 
2N/K + K + L. Notice that unitary resampling is started the moment 
all collective weights are stored, which is K cycles before inter-
mediate resampling is finished. Since K is generally much smaller 
than N/K, the processing time can be considered to scale with the 
number of PEs. The execution time of the RPA based and RNA 
based architectures is also summarized, as is shown in Table 1. For 
a fair comparison, the sampling step and the weight calculation 
step are all assumed to be pipelined, and the resampling (unitary  
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Table 1. Comparison of different architectures for distributed PFs 

Arch. Execution time Memory utilization 
RPA 2N/K + K + log2K + L + LRPA N(KP + W + 2log2N)  
RNA 2N/K + L + LRNA N(P + W + 2log2(N/K)) 
HR 2N/K + K + L NP + N/K(W + 2log2(N/K)) 

 
 
resampling in HR) step is realized with RSR based architecture. 
Also, L is used as the total startup latencies for simplicity. In the 
RPA based architecture, LRPA is the variable time for the particle 
redistribution, which may become dominant in a high level of 
parallelism. In the RNA based architecture, LRNA denotes the delay 
of the local particle exchange among PEs. The proposed architec-
ture eliminates the redistribution of particle, thus performs with a 
definite period which is less than that of the other two architectures. 

The memory utilizations of the three architectures are also in-
cluded in Table 1, where the symbols, P and W, stand for the word 
lengths used to represent particle states and weights separately, and 
the logarithmic values denote the widths of replication factors and 
particle indexes. Since the unitary resampling in HR is shared by 
all PEs, the memory used for resampling in the proposed architec-
ture is only 1/K of the other two, leading to a minimum utilization 
of the three. On the other hand, the RPA based architecture needs a 
size of the particle state memory K times of that in the other two, 
increasing the memory requirement tremendously. This is because 
the state memory size in RPA must be designed for the worst case 
due to the non-deterministic redistribution of particles after resamp-
ling. 

Furthermore, the proposed architecture features well scalability, 
profiting from a convenient reuse of PE and the unitary resampling 
unit, as well as the regular structure of the intermediate resampling 
unit.  

Fig.6 shows the simulation results of the three schemes with 8 
PEs when the CLS model is applied. The mean of the root mean 
square error (RMSE) is used as the criterion of evaluation. As can 
be expected, the proposed scheme performs close to RPA and better 
than RNA. 
 

5. CONCLUSION 
 
Presented in this paper is a hierarchical architecture for distributed 
PFs. By decomposing resampling into two hierarchies, the proposed 
architecture removes the tricky particle redistribution procedure, 
and simplifies the complex control logic. With high performance 
and no accuracy loss, it surpassed the conventional RPA based and 
RNA based alternatives in terms of short execution time, high 
memory efficiency and well scalability. 
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