
HIERARCHICAL RESAMPLING ARCHITECTURE FOR DISTRIBUTED PARTICLE
FILTERS

Ning Zheng, Yun Pan, and Xiaolang Yan

Institute of VLSI Design

 Zhejiang University, China
{zhengning, panyun, yan}@vlsi.zju.edu.cn

Ruohong Huan

College of Computer Science and Technology
Zhejiang University of Technology, China

huanrh@zjut.edu.cn

ABSTRACT

In this paper, a hierarchical resampling (HR) architecture has been
presented for distributed particle filters (PFs). The proposed archi-
tectures decomposes the resampling step into two hierarchies, of
which the first one, called intermediate resampling, is conducted
consecutively among processing elements (PEs) the moment new
particles and their weights are generated by each PE, and the second
one, named unitary resampling, is performed sequentially after the
whole intermediate resampling procedure and shared by all PEs.
Compared with traditional distributed architectures, the HR archi-
tecture eliminates the particle redistribution step, and has such ad-
vantages as short execution time, high memory efficiency and well
scalability.

Index Terms—Architecture, distributed particle filters, hierar-
chical resampling, latency, high memory efficiency

1. INTRODUCTION

Particle filters (PFs) have achieved, since their original introduction
[1], great popularity as a powerful approach in addressing nonlinear
and/or non-Gaussian dynamic systems modeled in state-space [2–
6]. It is a Monte Carlo simulation and Bayesian estimation based
methodology, where the basic idea is a recursive approximation of
relative posterior probability distributions with a set of discrete
random samples.

Of the three steps involved in general PFs, i.e. sampling, weight
calculation and resampling, the last one requires a joint processing
of all particles due to its sequential nature, and thus affects signifi-
cantly the execution time. Various architectures have been explored
for centralized resampling [7–10], though, it remains a bottleneck
to implement resampling efficiently for distributed PFs. Therefore,
development of a resampling architecture suitable for distributed
PFs becomes the key to accelerate further the filter processing, and
has gained considerable interest in the literature [11–13].

Despite the improvement in speed, current distributed implemen-
tations of PFs suffer from the following potential major drawbacks:

1) Particles need to be redistributed after resampling in each pro-
cessing element (PE), which is non-deterministic and accordingly
limits the hardware scalability.

2) The whole realization demands too much hardware cost,
especially the memory resource.

3) The accuracy of estimation is no longer guaranteed due to the
trade-off between the performance and the complexity.

In this paper, we propose a hierarchical resampling (HR) scheme
and the corresponding architecture for distributed PFs. In HR, the
resampling step is decomposed into two hierarchies. The first one,
called intermediate resampling, is conducted continuously among
PEs the moment new particles and relevant weights are generated
by each PE; the second, named unitary resampling, is performed
after the whole intermediate resampling procedure and shared by
all PEs. HR has similar resampling result to standard resampling in
statistics, yet it results in a hardware architecture for distributed
PFs with a couple of encouraging features: first, resampling is
decomposing into two more granular hierarchies, both of which can
be realized in a pipeline fashion; second, redistribution of particles
is eliminated, which leads to a simple control scheme and a well
architecture scalability; third, unitary resampling has fewer weights
to handle and can be shared by all PEs, which reduces significantly
the execution time as well as the hardware cost.

The remainder of the paper is organized as follows. Section 2
reviews briefly the main existing distributed resampling schemes,
followed by the HR scheme and its corresponding architecture in
Section 3. Section 4 analyzes the performance of the architecture
in terms of execution time, memory utilization, as well as scala-
bility, and Section 5 concludes the paper.

2. DISTRIBUTED RESAMPLING SCHEMES

The most challenging issue in distributed PFs is how to redistribute
particles among PEs after resampling. Such redistribution results
from the random distribution of particle weights, and is necessary
to balance the workload of each PE in the next recursion. Current
distributed resampling schemes mainly include two strategies: re-
sampling with proportional allocation (RPA) and resampling with
non-proportional allocation (RNA) [11].

RPA is such a method that the number of particles each PE
replicates is firstly calculated, known as inter-resampling, and then
resampling is performed in parallel inside each PE, known as intra-
resampling. The main problem of RPA is the unpredictability in
execution time of particle redistribution after intra-resampling due
to the randomicity of particle numbers in each PE. Besides, the
sizes of memories must be designed for the worst case for each PE,
which increases the total memory requirement sharply. The concept
of RPA is shown in Fig.1 (a), where K = 4 PEs and N = 200
particles are employed, and a central unit (CU) is used for system
control. In this case, 30 surplus particles need to be transferred
from PE0, and 20 from PE3.

In RNA, on the other hand, the same number of particles is

1565978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Fig.1. Concepts of (a) RPA and (b) RNA.

resampled in each PE, and then partial particles are exchanged in a
deterministic way among neighboring PEs. The amount of particles
sent between PEs is fixed and defined in advance. In spite of the
simplicity, RNA has a inherent problem that the performance of
estimation can no longer be guaranteed since particles have vari-
ous weights both inside and among PEs after redistribution. The
concept of RNA is shown in Fig.1 (b), where 50 particles are
resampled in all PEs and 20 particles are transferred between adja-
cent PEs.

3. HIERARCHICAL RESAMPLING

In this section, a hierarchical resampling method is introduced.
Differing from common distributed resampling schemes that start
resampling after all particles and weights are generated, HR decom-
poses the resampling step into two hierarchies and starts as soon as
the first batch of particles and their weights are prepared in PEs.

3.1. Hierarchical Resampling Scheme

Consider a distributed implementation of PFs with N particles and
K PEs. The sampling step and weight calculation step are para-
llelized in PEs. When K new particles and weights are generated
simultaneously, a resampling process is conducted with the resam-
pled particles transferring to each PE; meanwhile the sum of the
weights is stored as the collective weight for each resampled
particle. The above operation is repeated N/K times till all N
particles are processed and N/K collective weights are preserved.
This procedure constitutes the first hierarchy of HR and is called
intermediate resampling as it is performed on the basis of only a
part of particles and weights each time. Afterwards, a unitary
resampling step, the second hierarchy of HR, is started which
resamples particles in each PE according to the collective weights.
Since particles in the same storage positions of each PE are in fact
resampled ones with equal weights, the unitary resampling can
then be shared among all PEs. An overall description of distributed
PFs with the HR scheme is given by Algorithm 1.

In standard resampling, e.g. systematic resampling, a particle xi
t ,

representing the ith particle generated at time index t, is resampled
with a replication factor (replicated times) ri

t that is proportional to
its weight wi

t . A mathematical representation can be expressed as

Ni
w

Nw
rE N

j

j
t

i
ti

t ,...,2,1,)(

1

 (1)

Algorithm 1: Distributed PFs with hierarchical resampling
for i = 1 : N/K

do in parallel in K PEs
Sample a new particle xi, j

t from the proposal distribution
Kjzxxqx t

ji
tt

ji
t ,...,2,1),,(~ .

1
,

Calculate the corresponding weight wi, j
t :

),(

)()(
,
1

,

,
1

,,

,

t
ji

t
ji

t

ji
t

ji
t

ji
ttji

t
zxxq

xxpxzp
w

end
Calculate the collective weight:

K

j

ji
t

i
t wW

1

,

Resample according to { xi, j
t , wi, j

t }K
j=1

for j = 1 : K
Send the jth resampled particle back to PEj

end for
end for
Resample particles according to the N/K collective weights for
each PE

where E(·) is the expectation function. In HR, a particle x i, j

t ,
standing for the ith particle generated by PEj at time index t, is first
resampled by intermediate resampling which gives its intermediate
replication factor r i, j

t as

Kj
K
N

i
W

Kw
rE

i
t

ji
tji

t ,...,2,1,,...,2,1,)'(
,

, (2)

where

K

m

mi
t

i
t wW

1

,

denotes the collective weight, and then resampled by unitary re-
sampling which determines the expectation of its final replication
factor ri, j

t as

Kj
K
N

i
w

Nw

W

W
K
N

W
Kw

W

W
K
N

rErE

KN

m

K

n

nm
t

ji
t

KN

m

m
t

i
t

i
t

ji
t

KN

m

m
t

i
tji

t
ji

t

,...,2,1,,...,2,1,

)'()(

1 1

,

,
1

,
1

,,

(3)

It can be seen that for a specific particle, the expectation of its
replication factor in HR is identical to that in standard resampling.
Indeed, a particle weight is utilized here in such two respects as
follows: it is first used directly for intermediate resampling of K
particles, and then employed indirectly for unitary resampling of
N/K particles in each PE. This ensures a lossless performance in
HR in statistics.

3.2. Hierarchical Resampling Architecture

The overall architecture of HR based distributed PFs is shown in
Fig.2, where K PEs are connected to the HR unit. For illustration,

1566

Fig.2. Architecture of HR based distributed PFs.

Fig.3. Architecture of intermediate resampling.

K = 4. Particles propagated per cycle in each PE, denote as p0~p3,
are resampled in the intermediate resampling unit with a pipeline
fashion according to their weights w0~w3 based on the concept of
systematic resampling. Resampled particles are then sent back to
the particle state memory of each PE; meanwhile the weight sum is
stored in the collective weight memory in the unitary resampling
unit. When N/K collective weights are prepared, unitary resampling
starts and performs in a way the same as that in the centralized
implementation. The final resampling outputs are shared by all PEs
and depend on the architecture used for unitary resampling, e.g. the
outputs are particle indexes and replication factors if the residual
systematic resampling (RSR) based architecture [7] is used.

Fig.3 shows the architecture of intermediate resampling accor-
ding with Fig.2. Before resampling, all temporary sum of weights
(TSW), i.e. the sum of the first k (1 k 4) weights, are calculated.
At the same time, the weight mean, denoted by S/K where S is the
sum of all weights, is provided to update the temporary value of the
resampling function U. In each intermediate resampling stage, as is
shown in Fig.4, all TSWs are compared with the current Ui (0 i

Fig.4. Architecture of one intermediate resampling stage.

Fig.5. Timing of the HR based architecture for distributed PFs.

3) and one resampled particle Pii is then selected by the subscript
of the first TSW that is no less than Ui. After K stages, each resam-
pled particle is transferred to the corresponding PE.

PE carries out the sampling and weight calculation steps, of
which the architecture is cooperating with that of unitary resamp-
ling, see [7].

4. PERFORMANCE ANALYSIS

The performance of the proposed architecture is analyzed in this
section from the aspects of execution time, memory utilization and
scalability. Besides, the chaotic Lorenz system model (CLS) [14]
is simulated as a case study.

The timing of the HR based architecture is illustrated in Fig. 5,
where LS, LW, LI and LU represent the startup latencies of sampling,
weight calculation, intermediate resampling, and unitary resampling,
respectively. As the first resampling hierarchy is pipelined with the
sampling and weight calculation steps, the execution time of one
whole filter iteration is much close to that of a centralized architec-
ture with N/K particles. If we use L to refer to all startup latencies
which are limited and can be neglected when N/K is large enough,
the total cycle time of the proposed architecture can be given as
2N/K + K + L. Notice that unitary resampling is started the moment
all collective weights are stored, which is K cycles before inter-
mediate resampling is finished. Since K is generally much smaller
than N/K, the processing time can be considered to scale with the
number of PEs. The execution time of the RPA based and RNA
based architectures is also summarized, as is shown in Table 1. For
a fair comparison, the sampling step and the weight calculation
step are all assumed to be pipelined, and the resampling (unitary

1567

Table 1. Comparison of different architectures for distributed PFs

Arch. Execution time Memory utilization
RPA 2N/K + K + log2K + L + LRPA N(KP + W + 2log2N)
RNA 2N/K + L + LRNA N(P + W + 2log2(N/K))
HR 2N/K + K + L NP + N/K(W + 2log2(N/K))

resampling in HR) step is realized with RSR based architecture.
Also, L is used as the total startup latencies for simplicity. In the
RPA based architecture, LRPA is the variable time for the particle
redistribution, which may become dominant in a high level of
parallelism. In the RNA based architecture, LRNA denotes the delay
of the local particle exchange among PEs. The proposed architec-
ture eliminates the redistribution of particle, thus performs with a
definite period which is less than that of the other two architectures.

The memory utilizations of the three architectures are also in-
cluded in Table 1, where the symbols, P and W, stand for the word
lengths used to represent particle states and weights separately, and
the logarithmic values denote the widths of replication factors and
particle indexes. Since the unitary resampling in HR is shared by
all PEs, the memory used for resampling in the proposed architec-
ture is only 1/K of the other two, leading to a minimum utilization
of the three. On the other hand, the RPA based architecture needs a
size of the particle state memory K times of that in the other two,
increasing the memory requirement tremendously. This is because
the state memory size in RPA must be designed for the worst case
due to the non-deterministic redistribution of particles after resamp-
ling.

Furthermore, the proposed architecture features well scalability,
profiting from a convenient reuse of PE and the unitary resampling
unit, as well as the regular structure of the intermediate resampling
unit.

Fig.6 shows the simulation results of the three schemes with 8
PEs when the CLS model is applied. The mean of the root mean
square error (RMSE) is used as the criterion of evaluation. As can
be expected, the proposed scheme performs close to RPA and better
than RNA.

5. CONCLUSION

Presented in this paper is a hierarchical architecture for distributed
PFs. By decomposing resampling into two hierarchies, the proposed
architecture removes the tricky particle redistribution procedure,
and simplifies the complex control logic. With high performance
and no accuracy loss, it surpassed the conventional RPA based and
RNA based alternatives in terms of short execution time, high
memory efficiency and well scalability.

6. REFERENCE

[1] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel

approach to nonlinear/non-Gaussian Bayesian state estimation,”
Proc. Inst. Elect. Eng., F, vol. 140, no. 2, pp. 107–113, 1993.

[2] A. Doucet and X. -D. Wang, “Monte Carlo methods for signal
processing: a review in the statistical signal processing
context,” IEEE Signal Process. Mag, vol. 22, no. 6, pp. 152–
170, 2005.

[3] P.M. Djuric, J.H. Kotecba, J. Zhang, Y. Huang, T. Gbirmai,
M.F. Bugallo, and J. Miguez, “Particle filtering,” IEEE Signal
Process. Mag, vol. 20, no. 5, pp. 19–38, Sep. 2003.

Fig.6. Comparison of RMSE mean of different schemes.

[4] S. Saha, N. K. Bambha, and S. S. Bhattacharyya, “Design and

implementation of embedded computer vision system based
on particle filters,” Comput. Vision Image Understanding, vol.
114, no. 11, pp. 1203–1214, 2010.

[5] F. Gustafsson, F. Gunnarsson, N. Fergman, U. Rofssell, J.
Jamsson, R. Karlsson, and P. -J. Nordlund, “Particle Filters
for Positioning, Navigation and Tracking,” IEEE Trans. Signal
Process., vol. 50, no. 2, pp. 425–437, 2002.

[6] H. Zhou, and S. Sakane, “Sensor planning for mobile robot
localization – a hierarchical approach using a Bayesian network
and a particle filter,” IEEE Trans. Rob., vol. 24, no. 2, pp.
481–487, 2008.

[7] A. Athalye, M. Bolic, S. Hong, and P. M. Djuric, “Generic
hardware architectures for sampling and resampling in
particle filters,” EURASIP J. Appl. Signal Process., vol. 17,
pp. 2888–2902, 2005.

[8] S. Hong, M. Bolic, and P. M. Djuric, “An efficient fixed-
point implementation of residual resampling scheme for high-
speed particle filters,” IEEE Signal Process. Lett., vol. 11, no.
5, pp. 482–485, 2004.

[9] S. -H. Hong, Z. -G. Shi, J. -M.. Chen, and K. -S. Chen, “A
low-power memory-efficient resampling architecture for
particle filters,” Circuit Syst Signal Process., vol. 29, no. 1,
pp. 155–167, 2010.

[10] N. Zheng, Y. Pan, X. Yan, and R. Huan, “Local weight mean
comparison scheme and architecture for high-speed particle
filters”, Electron. Lett., vol. 47, no. 2, pp. 142–144, 2011.

[11] M. Bolic, P. M. Djuric, and S. Hong, “Resampling algori-
thms and architectures for distributed particle filters,” IEEE
Trans. Signal Process., vol. 53, no. 7, pp. 2442–2450, 2005.

[12] S. Hong, M. Bolic, and P. M. Djuric, “High-throughput
scalable parallel resampling mechanism for effective redis-
tribution of particles,” IEEE Trans. Signal Process., vol. 54,
no. 3, pp. 1144–1155, 2006.

[13] A. C. Sankaranarayanan, A. Srivastava, and R. Chellappa,
“Algorithmic and architectural optimizations for computation-
ally efficient particle filtering,” IEEE Trans. Image Process.,
vol. 17, no. 5, pp. 737–747, 2008.

[14] J. Míguez, “Analysis of parallelizable resampling algorithms
for particle filtering,” Signal Process., vol. 87, pp. 3155–3174,
2007.

1568

