
PARAMETERIZED SCHEDULING FOR SIGNAL PROCESSING SYSTEMS USING
TOPOLOGICAL PATTERNS

Shenpei Wu, Chung-Ching Shen, Nimish Sane, Kelly Davis, and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742, USA
{spwu, ccshen, nsane, kdavis18, ssb}@umd.edu

ABSTRACT

In recent work, a graphical modeling construct called “topological
patterns” has been shown to enable concise representation and direct
analysis of repetitive dataflow graph sub-structures in the context of
design methods and tools for digital signal processing systems [1].

In this paper, we present a formal design method for specifying
topological patterns and deriving parameterized schedules from such
patterns based on a novel schedule model called the scalable sched-
ule tree. The approach represents an important class of parameter-
ized schedule structures in a form that is intuitive for representation
and efficient for code generation. We demonstrate our methods for
topological pattern representation, scalable schedule tree derivation,
and associated dataflow graph code generation using a case study for
image processing.

Index Terms— scheduling, software tools, image registration.

1. INTRODUCTION

In signal processing intensive application domains, dataflow graph
models are widely used to describe applications because of their
natural correspondence to signal flow graphs, and important forms
of computational structure that are exposed by such models [2].

For dataflow models of large-scale DSP applications, the under-
lying graph representations often consist of smaller sub-structures
that repeat multiple times. Topological patterns (TPs) have been
shown to enable more concise representation and direct analysis of
such substructures in the context of high level DSP specification lan-
guages and design tools [1]. Furthermore, by allowing designers to
explicitly identify such repeating structures, use of TPs provides an
efficient alternative to automated detection of such patterns, which
entails costly searching in terms of graph-isomorphism and related
forms of computation. A TP is inherently parameterized and pro-
vides a natural interface for parameterized scheduling, which en-
ables efficient derivation of adaptive schedule structures that adjust
symbolically in terms of design time or run-time variations.

Scheduling is a critical aspect of implementing dataflow graphs
(e.g., see [2]). Parameterized schedules have been studied before
(e.g., see [3, 4]), and previously, production and consumption rates
were key dataflow graph aspects that were used to generate param-
eterized schedules. Early work on parameterized scheduling for
dataflow graphs was done in the context of parameterized dataflow
representations. Parameterized dataflow is a meta-modeling tech-
nique that can be applied to any underlying “base” dataflow model,
such as SDF [5], FRDF [6], and CSDF [7], for dynamically reconfig-
uring the behavior of dataflow actors, edges, subsystems, and graphs

through parameter values [3]. Quasi-static scheduling techniques
were developed for parameterized synchronous dataflow (PSDF),
which is the integration of the parameterized dataflow meta-model
with SDF as the base model [3]. However, in this work, parame-
terized scheduling for scalable topologies was not addressed — the
underlying sets of actors and edges were assumed to be fixed.

The reactive process networks and parameterized Kahn process
network model of computation can be viewed as extensions of the
Kahn process network (KPN) modeling framework [8, 9], where
processes execute concurrently, applying blocking reads to assess
availability of data on their inputs, and control is incorporated into
processes in a distributed fashion without use of a global sched-
uler. While these models lead to flexible and efficient execution of
KPN-related models, they do not address the scheduling of scalable
topologies.

In this paper, we present a formal design method for specify-
ing TPs and deriving parameterized schedules from such patterns
based on a novel schedule model called the scalable schedule tree.
Our method ensures deterministic behavior of the system based on
compile-time analysis of its behavior that may contain parameter-
izable patterns of actors and edges instantiations. We have also
developed an associated software plug-in and integrated it into the
dataflow interchange format (DIF) framework [10] and the asso-
ciated cross-platform design and synthesis environment called tar-
geted DIF (TDIF) [11]. TDIF is a companion design tool of the DIF
framework that supports dynamic dataflow analysis, cross-platform
actor design, and code generation on targeted platforms [11].

2. SCALABLE SCHEDULE TREES

The generalized schedule tree (GST) is a compact, tree-structured
graphical format that can represent a variety of dataflow graph sched-
ules [4]. In GSTs, each leaf node refers to an actor invocation, and
each internal node n (called a loop node) is configured with an it-
eration count In for the associated sub-tree, where execution of the
sub-tree rooted at n is repeated In times.

In this paper, we go significantly beyond the capabilities of
GSTs by formulating and implementing a novel schedule tree model
for representing scalable schedules (i.e., schedules that symbolically
accommodate variations in the numbers of actors and edges in the
associated dataflow graphs that employ TPs). We refer to this new
form of schedule tree as the scalable schedule tree (SST) model.

2.1. SST Model

A scalable schedule tree (SST) has all of the features of a GST (e.g.,
see [4]) and additionally provides the following new features.

1561978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

1. Parameterization. A node within an SST can be parameterized
with a parameter set K. The semantics of how values associated
with elements of K change is determined by the model of compu-
tation that is used for application specification (e.g., SDF with static
graph parameters [12], parameterized dataflow [3], or scenario aware
dataflow [13]), in conjunction with the scheduling strategy that is
used to derive the schedule tree. This decoupling from parameter
change semantics allows the SST model to be applied to different
kinds of dataflow application models and design environments.
2. Guarded execution. An SST leaf node, which encapsulates a
firing (execution) of an individual actor, has an optional guarded at-
tribute, which indicates that firing of the corresponding actor should
be preceded by a run-time fireability (enabling) check. Such an en-
abling check determines whether or not sufficient input data is avail-
able for the actor to fire. The guarded attribute of SSTs is motivated
by the enable-invoke dataflow model of computation, where guarded
executions play a fundamental role [11].
3. Dynamic iteration counts. Loop nodes can be dynamically pa-
rameterized in terms of SST parameters, which provides capabilities
for data- or mode-dependent iteration in schedules. An SST loop
node L can be viewed as a parameterizable form of the constant-
iteration-count loop nodes in GSTs. An SST loop node L has an
associated iteration count evaluation function cL : K → Z+. An
implementation of cL takes as arguments zero or more of the pa-
rameters in K, and returns a non-negative integer (zero parameters
are used if the iteration count is constant). Visitation of L begins by
calling cL to determine the iteration count, and then executing the
subtree of L successively a number of times equal to this count.
4. Arrayed children. In addition to leaf nodes and SST loop nodes,
a third kind of internal node, called an arrayed children node (ACN),
is introduced to represent schedule structures related to TPs.

An ACN z has an associated array childrenz , which represents
an ordered list of candidate children nodes during any execution
of the SST subtree rooted at z. For simplicity, we assume that
childrenz is a one-dimensional array, but the associated formula-
tions can easily be extended to handle multi-dimensional arrays of
candidate children. The array childrenz has a positive integer size
sizez , which gives the number of elements in the array. It is assumed
that the array is indexed starting at 0.

Each element in childrenz represents a schedule tree leaf node
(i.e., an encapsulation of an actor in the enclosing dataflow graph),
an SST loop node, or another SST — i.e., a “nested” SST. An ACN
z also has three functions associated with it, which we denote as
cinitz , cstepz , and climitz, that determine how childrenz is tra-
versed during a given execution of the enclosing subtree. These
functions take as arguments pre-specified subsets of the parameters
of z, and return, respectively, a non-negative, positive, and non-
negative integer. One or more of these functions can be constant-
valued — dependence on parameter settings is not essential but
rather a feature that is provided for enhanced flexibility.

2.2. SST Traversal Process

When an ACN z is visited during traversal (execution) of the enclos-
ing schedule tree, the following sequence of steps, called the SST
traversal process, is carried out.
(1) The parameter settings for z are updated by applying the evalua-
tion function fp for each parameter p ∈ Pz .
(2) The values of cinitz , cstepz , and climitz are evaluated in terms
of the updated parameter settings. These values are stored in tempo-
rary variables, which we denote as I, s, and L, respectively.
(3) The computation outlined by the pseudocode shown in Algo-
rithm 1 is carried out, where A represents the array childrenz ;

Fig. 1. An example of an SST.

count represents the iteration count evaluation function of the as-
sociated SST loop node; and K represents the set of parameters for
the enclosing SST.

Algorithm 1 Outline of the SST traversal process.
for (i = I; i <= L; i += s) {

if A[i] is a leaf node {
execute the actor encapsulated by A[i]

} else if A[i] is an SST loop node {
Z = count(K)
execute the loop node subtree Z times

} else { // A[i] is a nested SST
recursively apply the SST traversal

process to A[i]
}

}

Figure 1 shows a synthetic example of a nested SST, where the
scheduling result S shows the sequence of actor executions that re-
sults from traversing the given SST.

2.3. Integration in the DIF Framework

We have implemented a new plug-in to the DIF framework that ex-
tends the DIF language (TDL) to incorporate support for TPs and
allows designers to construct SSTs for schedules associated with
dataflow graphs that are specified in TDL. This plug-in integrates
the SST formulations developed in Section 2 as a new internal repre-
sentation format and associated set of manipulations within the DIF
framework. TPs that are currently supported by TDL and defined
as pattern keywords in the language include chain, ring, merge,
broadcast, parallel, and butterfly.

We have also integrated specification and code generation sup-
port into the TDIF environment for SSTs. In this integration, we
raise the level of abstraction for schedule specification by allowing
SST-based specification of schedules, where leaf nodes in the sched-
ule trees are connected to the same TDIF-generated interfaces. SSTs
are specified programmatically using graph construction APIs asso-
ciated with the SST internal representation.

Code generation in TDIF for an SST is carried out by apply-
ing depth first search to traverse the schedule tree, and invoking a
specialized code generation module in each visitation step depend-
ing on the kind of node that is visited (leaf node, SST loop node,
or ACN). The code generated from an SST, which implements the
scheduler for the given application, can be linked together with a top-
level C file that is automatically generated from the TDIF environ-
ment, and actor code from the associated actor library to construct
an executable that implements the application.

1562

3. CASE STUDY: CASCADE GAUSSIAN FILTERING

To demonstrate our methods and associated new plug-in for repre-
sentation of and code generation from schedules for dataflow graphs
that employ TPs , we use the cascade Gaussian filtering (CGF) sub-
system in the Scale-Invariant Feature Transform (SIFT) algorithm
as a case study [14]. SIFT is a well-known algorithm in computer
vision for feature detection and matching of images.

The CGF subsystem contains a number of Gaussian filters with
different standard deviations. These filters produce a series of Gaus-
sian filtered images. CGF is a relevant case study for experimenting
with TPs and SSTs because it can be modeled naturally in terms of
parameterized topologies. As shown in Fig. 2(a), CGF can be mod-
eled as a dataflow graph consisting of actors that perform Gaussian
filtering and downsampling computations. These computations can
be divided into a set of o groups, such that each group involves s

filtering steps. Both o and s are parameters that can be configured
by the designer (e.g., to explore trade-offs between processing com-
plexity and image processing accuracy).

In the CGF process illustrated in Fig. 2(a), the original image is
convolved with the first filter. The filtered image is saved and then
convolved with the next filter, and so on. After one group of filtering
operations is carried out, s different blurred Gaussian images are
labeled as a separate octave. The next step is to downsample the last
image of the previous octave by a factor of two. This process, as
shown in Fig. 2(a), repeats until o octaves of images are produced.

3.1. Applying the Scalable Schedule Tree

The TP underlying the CGF application is a chain (linear arrange-
ment of actors), which can be specified in TDL. Fig. 2(b) shows the
TDL specification with o = 6 and s = 6. Here, an array of 40

edges is instantiated by connecting 41 specified nodes (six groups of
six nodes each that are interleaved with five individual nodes) in a
chain.

In this CGF example, since both o and s are parameters that can
be configured, one can naturally derive a nested SST as shown in
Fig. 2(c). Such a representation provides a formal, target-language-
independent model of schedule structure that can be applied to coor-
dinate execution for this subsystem in a manner that is parameterized
across two dimensions.

As shown in Fig. 2(c), the cascade Gaussian filter
ACN has 11 children nodes, which include 6 nested ACNs, each
labeled as filter, and 5 downsampler actors encapsulated as
leaf nodes, which are labeled as D[0], D[1], . . . , D[4]. Each of
these leaf nodes represents an encapsulation of a downsampler
actor in the CGF application. Each internal node labeled filter is
an ACN that contains 6 children nodes, where each of these children
nodes represents an encapsulation of a Gaussian filter actor
in the application.

3.2. Evaluation in Terms of Coding Efficiency

Our design framework for specifying TPs enables concise and scal-
able representation of DSP applications. To help quantify this kind
of benefit, we apply an evaluation metric called the lines of code
(LOC), which is the number of lines of code required for an applica-
tion. Unless otherwise specified, the LOC cost refers to code that the
designer needs to manually provide (e.g., in contrast to code that is
automatically generated or reused from some other part of an imple-
mentation). We apply this metric on various applications, including
the CGF application, that are specified with and without use of TPs.

We first compare LOC evaluation results, as shown in Table 1(a),
for different applications by using TDL with and without the support

Table 1. LOC costs (a-c), and performance comparison (d).

of TPs. For the specifications in this comparison, each node and edge
declaration occupies a separate line of code.

We also compare the LOC cost of CGF implementation that uses
code generation and the LOC cost of the generated code in the TDIF
environment. This gives a comparison of the complexity of the com-
plete implementation generated using TDIF compared to the com-
plexity of the code that the designer has to write and maintain as
source code. Due to space limitations, we omit the listings of these
code implementations.

Table 1(b) summarizes the LOC costs for different implemen-
tation components for the CGF application when code generation is
used — i.e., these are the costs for the designer-written code that
can be viewed as input to the TDIF toolset. These costs are listed as
functions of the numbers of dataflow graph actors n and edges e in
the scalable application, and the total LOC costs c in the designer-
written component of the actor implementations.

On the other hand, Table 1(c) shows the LOC costs of the com-
plete generated implementation — i.e., the generated code together
with the designer-written TDIF input code that is used directly (with-
out translation) in the implementation.

In the CGF application, the underlying TP is a chain, and the
number of edges is of the same order as the number of nodes. Thus,
comparing the LOC listings in Table 1(b) and Table 1(c), we see that
as the number of nodes n in the application is increased, the ratio
of the designer-written LOC cost to the complete implementation
LOC cost decreases. This helps to quantify the utility of the TDIF
tool in terms of LOC costs as a function of graph complexity. This
comparison incorporates the use of TPs, which help to reduce the
LOC cost for the top-level DIF specification.

3.3. Cross-Platform Experimentation

TDIF includes capabilities for targeting CUDA-enabled graphics
processing units (GPUs) in addition to pure C code (“CPU targeted”)
implementations [11]. As part of this case study, we experimented
with the CUDA-targeted synthesis capability of TDIF for the CGF
application. This aspect of our case study validates the utility of TPs
and the developed tool chain in enhancing application specification
and scalability in the context of cross-platform experimentation to
explore trade-offs on alternative targets.

In these experiments, input to the application is a 1200 × 900

gray-scale bitmap image, and the implementations are executed on a

1563

Fig. 2. Cascade Gaussian filtering.

3GHz PC with an Intel CPU that is equipped with 4GB RAM, and
co-located with an NVIDIA GTX260 GPU. Table 1(d) shows a per-
formance comparison of CPU- and GPU-targeted implementations
for the CGF application. Both implementations were generated by
TDIF based on SSTs that exploit TP structures in the application
specifications. The results are obtained according to the average ex-
ecution time for 100 runs in each of the two cases.

The results show that GPU acceleration provides significant ben-
efit in this application, and validates the retargetability of our use
of TPs and SSTs in TDIF. Use of the TDIF environment allows us
to obtain such a comparison with relatively high coding efficiency,
and a correspondingly high degree of automation, as demonstrated
in Section 3.2. This is due to the high level of abstraction and ac-
companying formal modeling capabilities provided by TDIF and the
associated TDL programming features. Use of TPs helps to enhance
the coding efficiency and raise the level of abstraction further by rep-
resenting applications in terms of scalable, higher level constructs
that are complementary to conventional forms of hierarchy, which
are employed in related kinds of dataflow specifications.

4. CONCLUSIONS

In this paper, we have presented a novel scalable schedule tree (SST)
model for representing parameterized schedule structures based on
topological patterns. We have also presented a new plug-in to the
DIF framework for specifying SSTs that execute dataflow models
with topological patterns, and for generating C code from travers-
ing these SSTs. We have validated our new methods and tools, and
demonstrated their utility through a case study centered around cas-
cade Gaussian filtering for image processing. Useful directions for
further work include exploring SSTs that incorporate more complex
forms of adaptivity, and supporting code generation on additional
platforms, such as FPGAs and multicore digital signal processors.

5. ACKNOWLEDGEMENT

This research was sponsored in part by the US Air Force Research
Laboratory, Laboratory for Telecommunication Sciences, and US
National Science Foundation.

6. REFERENCES

[1] N. Sane, H. Kee, G. Seetharaman, and S. S. Bhattacharyya,
“Scalable representation of dataflow graph structures using
topological patterns,” in Proceedings of the IEEE Workshop
on Signal Processing Systems, October 2010.

[2] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala,
Eds., Handbook of Signal Processing Systems, Springer, 2010.

[3] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized
dataflow modeling for DSP systems,” IEEE Transactions on
Signal Processing, October 2001.

[4] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya,
B. Kienhuis, and E. Deprettere, “Parameterized looped sched-
ules for compact representation of execution sequences in DSP
hardware and software implementation,” IEEE Transactions
on Signal Processing, June 2007.

[5] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,”
Proceedings of the IEEE, September 1987.

[6] H. Oh and S. Ha, “Fractional rate dataflow model for efficient
code synthesis,” Journal of VLSI Signal Processing Systems
for Signal, Image, and Video Technology, May 2004.

[7] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete,
“Cyclo-static dataflow,” IEEE Transactions on Signal Process-
ing, February 1996.

[8] M. Geilen and T. Basten, “Reactive process networks,” in
Proceedings of the International Workshop on Embedded Soft-
ware, September 2004.

[9] H. Nikolov, T. Stefanov, and E. Deprettere, “Modeling and
FPGA implementation of applications using parameterized
process networks with non-static parameters,” in Proceedings
of the IEEE Symposium on FPGAs for Custom Computing Ma-
chines, 2005.

[10] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software synthesis
from the dataflow interchange format,” in Proceedings of the
International Workshop on Software and Compilers for Em-
bedded Systems, September 2005.

[11] C. Shen, H. Wu, N. Sane, W. Plishker, and S. S. Bhattacharyya,
“A design tool for efficient mapping of multimedia applications
onto heterogeneous platforms,” in Proceedings of the IEEE
International Conference on Multimedia and Expo, July 2011.

[12] E. A. Lee, W. H. Ho, E. Goei, J. Bier, and S. S. Bhattacharyya,
“Gabriel: A design environment for DSP,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, November 1989.

[13] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten,
S. V. Gheorghita, and S. Stuijk, “A scenario-aware data flow
model for combined long-run average and worst-case perfor-
mance analysis,” in Proceedings of the International Confer-
ence on Formal Methods and Models for Codesign, July 2006.

[14] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, 2004.

1564

