
POLAR FORMAT SYNTHETIC APERTURE RADAR IN ENERGY EFFICIENT
APPLICATION-SPECIFIC LOGIC-IN-MEMORY

Qiuling Zhu�, Christian R. Berger†, Eric L. Turner‡, Larry Pileggi�, Franz Franchetti�

�Dept. of Electrical and Comp. Eng., Carnegie Mellon University, Pittsburgh, PA, USA
†Wireless System R&D, Marvell Semiconductor, Santa Clara, CA, USA

‡Dept. of Electrical Eng. and Comp. Science, University of California Berkeley, Berkeley, CA, USA

ABSTRACT

In this paper we present a local interpolation-based variant of the
well-known polar format algorithm used for synthetic aperture radar
(SAR) image formation. We develop the algorithm to match the
capabilities of the application-specific logic-in-memory processing
paradigm, which off-loads lightweight computation directly into the
SRAM and DRAM. Our proposed algorithm performs filtering, an
image perspective transformation, and a local 2D interpolation and
supports partial and low-resolution reconstruction. We implement
our customized SAR grid interpolation logic-in-memory hardware
in advanced 32nm silicon technology. Our high-level design tools
allow to instantiate various optimized design choices to fit image
processing and hardware needs of application designers. Our simu-
lation results show that the logic-in-memory approach has the poten-
tial to enable substantial improvements in energy efficiency without
sacrificing image quality.

Index Terms— Synthetic Aperture Radar, Interpolation, Logic
in Memory, Chip Generator

1. INTRODUCTION

The polar format algorithm (PFA) used for image formation in syn-
thetic aperture radar (SAR) is computationally demanding and data-
intensive [1, 2]. Its realtime constraints and low-power require-
ments make it a promising target for advanced power-saving designs.
Enabled by latest circuit design improvements [3], the application-
specific logic-in-memory paradigm is proposed to move simple com-
putation directly into the memory, and minimize the data movement
from memory to the processors (see Fig. 1).

Logic-in-memory builds on the idea of processing in mem-
ory [4], however, puts only simple logic instead of actual processing
cores right into the memory structures. On an architecture level, the
logic-enhanced memories look like normal memories to the CPU,
but perform extra (and cheap) operations on the stored data before re-
turning the requested data item to the CPU. Since only limited func-
tionality can be moved into memory, algorithms need to be adapted
to match the constraints of the logic-in-memory paradigm.

Design automation is required for handling the increased com-
plexity of memory-logic-mixing hardware accelerators and the intri-
cacies of cutting edge and next-generation silicon technology. Phys-
ical implementation of our logic and memory-mixing hardware is
enabled by the constructs-based smart memory compiler that com-
piles pattern-compatible logic and memory without the need for pre-

The authors acknowledge the support of the C2S2 Focus Center, one
of six research centers funded under the Focus Center Research Program
(FCRP), a Semiconductor Research Corporation entity.

Figure 1. Logic-in-Memory computing paradigm.

designed IP blocks [5]. Further, we build application-specific high-
level design tools using the Genesis2 design tool [6, 7]. The com-
bination of these tools allows designers simple design space explo-
ration to optimize their designs for energy budgets, image recon-
struction quality, and performance.

Contribution. The main contribution of this paper is an al-
gorithm for performing SAR polar format re-gridding interpolation
suited for the logic-in-memory paradigm, and to provide the neces-
sary design automation tool chain to implement our proposed algo-
rithm in advanced silicon technology. We combine filtering, geo-
metric transformations, and localized 2D interpolation to provide a
virtual rectangular 2D memory address space that is overlaying the
polar grid and performs the necessary interpolation on demand. En-
abled by this on-demand interpolation our system further provides
partial image reconstruction, allowing for reconstructing both low-
resolution thumbnails and high-resolution patches.

2. BACKGROUND

Synthetic aperture radar. Synthetic aperture radar is essentially
“taking a photo with radar”. A radar mounted on a plane sends re-
peatedly pulses to the scene patch and records the reflections, ro-
tating the antenna to aim at the same scene center for all pulses.
The image is formed by computing the inverse fast Fourier transform
(FFT) of the recorded data. However, the data is sampled on a polar
grid, and the PFA first converts these polar samples into rectangular
samples, so that a standard FFT can be applied for image formation.
Without this conversion, a computationally infeasible non-uniform
Fourier transform would have to be applied [1].

Computationally, the polar-to-rectangular conversion is often
done separably (first processing all rows and then all columns of the
data), using FFT-based upsampling followed by picking the nearest
neighbor to the actual grid points of interest [2]. The reliance on
FFTs makes this approach efficient, however, it requires non-local
computation due to the well-known FFT data access pattern. An al-
gorithm for logic-in-memory cannot rely on FFTs but requires local
computation, as we discuss next. Thus, we need to develop a local-
ized variant of polar-to-rectangular interpolation.

1557978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Logic-in-memory. Advances in chip design methodology allow
the tight integration of computational logic and memory cells, based
on regular pattern constructs [3]. This tight integration enables ro-
bust compilation of both logic and memory [5]. This gives rise to
the application-specific logic-in-memory computational paradigm,
which moves part of a program’s computation directly into the mem-
ory but keeps the usual memory interface. It is easy to program, as
all computational operations are hidden behind the memory abstrac-
tion. It requires application-specific logic to reach the desired energy
savings. Thus, it is more specialized than the earlier processor-in-
memory idea [4]. The major restriction of logic-in memory is that
only localized (nearest neighbor) data access can be implemented
efficiently, and that, stride-like data access as required for FFTs is
prohibitively expensive.

Interpolation. A well-suited algorithm for logic-in-memory is
1D interpolation using the Newton divided difference formula [8],

Pn(x) = Pn−1(x) + f [x0, . . . , xn](x− x0) · · · (x− xn−1), (1)

in which Pn(x) interpolates f(x) at the points in x0, . . . , xn−1 with
a recursive definition of the nth-order divided difference of f(x) as
follows:

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
. (2)

This approach can be cheaply implemented in logic-in-memory, both
for integer and floating-point output. This insight is a crucial en-
abling step for our logic-in-memory SAR variant.

Image perspective transformation. Another algorithm that is
suitable for logic-in-memory and becomes a core component of our
SAR variant is the perspective transformation. It is used to map
each point (u, v) in one quadrilateral to the point (x, y) in another
quadrilateral. The forward mapping function is given by

[x′, y′, w′] = [u, v, w]

⎡
⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ , (3)

where x = x′/w′, y = y′/w′ and the coefficients aij are deter-
mined by establishing the correspondences between four corners in
the input and output geometry [9].

Frequency filter. The final algorithm we are using to develop
our logic-in-memory SAR variant is filtering. Straight-forward im-
plementation of finite impulse response (FIR) filters becomes too ex-
pensive for long tap lengths, but a finely-tuned combination of FIR
and cascaded integrator-comb (CIC) filters can be implemented very
efficiently in logic-in-memory. This enables us to implement partial
image reconstruction for both low-resolution thumbnails as well as
high-resolution scene patches in logic-in-memory. We rely on sim-
ple Fourier transform identities to translate phase shifts in frequency
space to time-domain displacements [10].

3. LOCAL INTERPOLATION BASED SAR

The main idea underlying our approach is to simply use a stan-
dard 2D interpolation for polar data to rectangular data reformatting,
which has the potential of being efficient in logic-in-memory. The
basic idea is shown in Fig. 2(a): we compute the value of the star
P (x) (an exemplary output point) by taking the weighted sum of
its four neighbors (black dots; original measurements), using their
euclidian distance as weights. However, this computation involves
operations too complex for logic-in-memory (square root, arcus tan-
gent). We have to decompose this interpolation into a coordinate

Figure 2. Localized polar-to-rectangular grid interpolation.

Figure 3. Image tiling for accurate geometric approximation.

transformation and 2D surface interpolation and perform quadrilat-
eral tiling to approximate the curvature by short straight lines.

Coordinate conversion and surface interpolation. Fig. 2(b)
shows the first step in implementing the interpolation-based polar
formatting: we map the polar anulus (the polar grid on which the
SAR data is collected) to a rectangular grid by using the image per-
spective transformation. This mapping distorts the rectangular des-
tination grid but preserves its distances to the original data points.
Then we use standard 2D surface interpolations to calculate the value
at the output location from the original data and the interpolation
weights derived from the distances in the transformed coordinate
system. Fig. 2(c) shows as example the bilinear 2D surface in-
terpolation that requires four neighboring measurements. Both of
the transformation and interpolation involve trivial arithmetic logic
in logic-in-memory. Although a division is required in perspective
transformation, the small dynamic range in the divisor and dividend
allows us to replace it by another 2D interpolation.

Geometry approximation and image tiling. Our localized grid
interpolation is based on several geometric approximations. Firstly,
we approximate the polar annulus by quadrilateral tiles (Fig. 3). Sec-
ondly, we assume that the measurement grids are evenly distributed
on a rectangular grid after the transformation. These approximations
could result in distortions in the resulting reconstructed image. As
shown in Fig. 3, accurate approximation is achieved if the radian
spatial frequency lower bound (RL) is large enough (which is true
for most SAR applications) and the coherent integration angular in-
terval (Θ) is small enough. Therefore, an effective solution is to
tile the image into small parts and perform the geometry approxima-
tion on each tile. We tile the output image in the Cartesian grid and
find the minimum subset of the polar annulus that contains the cor-
responding rectangular tile. The resulting distortion is smaller than
the intrinsic distortion of perfect SAR image reconstruction.

4. SAR IMAGE PARTIAL RECONSTRUCTION

When reconstructing large data-set problems for small display de-
vices (e.g., handheld devices), partial reconstruction would be
preferable to prevent energy waste from processing all pixels and
then displaying only a subset. Since our local interpolation-based
scheme is reconstructing one pixel at a time in an on-demand fash-
ion, partial reconstruction becomes feasible (see Fig. 4). We support
two partial reconstruction modes, as described below.

1558

Figure 4. SAR partial image reconstruction.

Low resolution full-size image display. In this scenario, we
get a quick overall view of the whole image without the fine-scale
details (a thumb nail). This corresponds to multiplying the Fourier
space (the original data) with a mask which attenuates the high fre-
quency components. Only data elements that correspond to the low
frequency components are interpolated and computations for high
frequency components are saved. A much smaller 2D inverse FFT
can be used afterwards, saving a substantial amount of operations.

High resolution partial-size image display. As second sce-
nario we reconstruct only a small portion of image (however, at full
resolution). This can be seen as multiplication by a mask in the spa-
tial domain, or equivalently, as decimation filtering in the frequency
space [10]. Filtering is necessary for image anti-aliasing and the
filter decimation factor corresponds to the proportion of the image
area to be reconstructed in space. Using Fourier identities we can
reconstruct sub-patches of an image at arbitrary position with arbi-
trary size. In the implementation we rely on the combination of a
CIC and short FIR filter for decimation since the CIC filter requires
no multiplications and its simple hardware implementation can be
easily integrated with the logic-in-memory interpolation, however,
accuracy requires us to uses some FIR filtering.

Computational cost. The proposed grid interpolation has eco-
nomical hardware implementations. For example, 2D bilinear inter-
polation can be separated into two horizontal and one vertical 1D
linear interpolations (or vice versa), and each 1D linear interpola-
tion involves only 2 adders, 1 multiplier and several boolean logic
operations. Moreover, these operations are computed locally in the
memory and therefore consume much less energy compared with in-
CPU computing. For partial reconstruction, the chosen CIC filter
only involves 8 adders and 8 storage registers.

5. AUTOMATED DESIGN TOOLS

We use the Genesis2 design tool [7] as the infrastructure to build
the SAR polar reformatting logic-in-memory chip generator (see
Fig. 5(a)). It enables an application designer to explore the de-
sign space to optimize the design by simply varying the parameters
and automatically generates the optimized synthesizable logic-in-
memory hardware. The physical synthesis of the logic-in-memory
hardware is implemented by the pattern construct based “smart
memory” compiler [3, 5]. Fig. 5(b) shows the user interface of the
SAR polar reformatting logic-in-memory chip generator.

The image formation process requires a series of problem pa-
rameters and each parameter setting leads to a different hardware im-
plementation. In addition, both interpolation and filtering are trade-
off problems in terms of performance/accuracy/cost. For example,
the transition-region of a non-ideal filter will result in added distor-
tion at the image edge. Therefore, the narrower the transition region
the better the edge quality, but the higher the hardware cost.

Figure 5. Design automation flow and chip generator.

6. EXPERIMENTAL RESULTS

In this section we evaluate our logic-in-memory based SAR imple-
mentation for accuracy, performance and cost. We use our design
tool to automatically synthesis the hardware for measurement and
also build an architectural model to simulate the algorithm.

Accuracy and hardware cost. First we compare the accu-
racy of our local interpolation SAR algorithm to the conventional
FFT upsampling based approach. We simulate randomized radar
scenes of point targets and perform the re-gridding using both meth-
ods. Fig. 6(a) shows the mean square error (MSE) distribution for
both approaches, which is computed relative to a reference that uses
a computationally infeasible non-uniform inverse FFT that has a
closed-form solution for point targets. We see that the distortions
caused by the two interpolation methods are statistically indistin-
guishable. In Fig. 6(b) we vary tile numbers and interpolation order.
As expected, we see the MSE decreasing for larger tile numbers and
higher interpolation order.

Next we evaluate the cost of logic-in-memory. Fig. 6(c) shows
that the number of arithmetic operations for the 2D IFFT is decreas-
ing when the decimation factor in partial reconstruction is increased.
Fig. 6(d) shows the hardware cost of logic-in-memory blocks on
32nm CMOS; the y axis values are the logic area relative to the data
storage memory area. The bottom curve shows the grid interpola-
tion area for the full image reconstruction. For partial reconstruc-
tion, the top three curves add in the decimation filter area for three
filter design specifications. We see that although the area for partial
reconstruction increases slightly with the increase of decimation fac-
tor, the y axis values are fairly small for all the design points. Thus,
the logic area is negligible compared with memory area for both full
and partial reconstruction. Further, to the results in Fig. 6(c) and
Fig. 6(d), the decrease in operations through smaller IFFTs is not
increasing the hardware cost substantially.

Energy efficiency. To evaluate the energy efficiency of our
logic-in-memory SAR implementation, we simulate the whole SAR
polar format algorithm in two variants: (1) we run the image recon-
struction on a simple processor with a standard SRAM cache, and

1559

Figure 6. Experimental results.

(2) we replace the cache with our logic-in-memory hardware that
performs the interpolation in the memory and run a program recon-
structing the image using this memory. We measure the energy con-
sumption using the Wattch simulator, which is an architectural level
power simulator based on SimpleScalar [11]. We model the logic-
in-memory as direct-mapped on chip memory and scale the mem-
ory accessing energy by adding the normalized embedded logic cost
from the hardware characterization results. We plot the results for
both the conventional and logic-in-memory architecture at different
problem sizes from 32 to 512. The results in Fig. 7 show orders of
magnitude of energy saving achieved by logic-in-memory especially
for large data-size problems.

7. CONCLUSION

Advances in integrated circuit design enable the energy-saving logic-
in-memory paradigm, which moves part of the computation directly
into the memory array. This cutting-edge design methodology re-
quires redesign of well-known algorithms to match its performance
characteristics. In this paper we derive a logic-in-memory variant of
the polar formatting algorithm used in SAR image formation, and
it has equal accuracy as the traditional FFT-based polar formatting
algorithm but requires much less energy. Our algorithm further sup-
ports partial image reconstruction. We provide the necessary design
automation tool chain to enable users to study design trade-offs in
the energy and performance space. Our experimental results show
substantial energy saving at the same accuracy level.

8. REFERENCES

[1] W. Carrara, R. Goodman, and R. Majewski, Spotlight Synthetic Aper-
ture Radar: Signal Processing Algorithms. Artech House, 1995.

[2] D. McFarlin, F. Franchetti, M. Püschel, and J. Moura, “High perfor-
mance synthetic aperture radar image formation on commodity multi-
core architectures,” SPIE, 2009.

Figure 7. LiM energy consumption savings.

[3] D. Morris, V. Rovner, L. Pileggi, A. Strojwas, and K. Vaidyanathan,
“Enabling application-specific integrated circuits on limited pattern
constructs,” Symp. VLSI Technology, June 2010.

[4] P. M. Kogge, T. Sunaga, H. Miyataka, K. Kitamura and E. Retter,
“Combined DRAM and Logic Chip for Massively Parallel Systems,”
Conf. Advanced Research in VLSI., 1995.

[5] D. Morris, K. Vaidyanathan, N. Lafferty, K. Lai, L. Liebmann, and
L. Pileggi, “Design of embedded memory and logic based on pattern
constructs,” Symp. VLSI Technology, June 2011.

[6] O. Shacham, O. Azizi. et.al., “Rethinking digital design: Why design
must change,” IEEE Micro, vol. 30, no. 6, pp. 9–24, 2010.

[7] O. Shacham, “Chip multiprocessor generator: automatic generation of
custom and heterogeneous compute platforms,” PhD Thesis, Stanford
2011.

[8] A. S. Noetzel, “An interpolating memory unit for function evaluation:
Analysis and design,” IEEE Trans. Computers, vol. 38, no. 3, pp. 377–
384, 1989.

[9] G. Wolberg, Digital Image Warping (Systems). IEEE Computer So-
ciety Press, 1990.

[10] R. Lyons, Understanding Digital Signal Processing. Prentice Hall,
2004.

[11] D. Brooks, and V. Tiwari, “Wattch: a framework for architectural-level
power analysis and optimizations,” Proc.ISCA, 2000.

1560

