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ABSTRACT

Non-Volatile Memories (NVMs) have many advantages over

traditional DRAM. It is desirable to apply NVM as main memory in

embedded Chip Multi-Processor (CMP) systems. However, NVMs

have drawbacks that need to be overcome. That is, a write to the

NVMs is expensive. Loops are the most critical and time-consuming

part in digital signal processing (DSP) applications. However, loops

are difficult to parallelize on multi-processor systems due to the

inter-iteration dependencies. This paper targets on embedded CMP

systems and proposes techniques to improve loop parallelism while

considering reducing the write activities to the NVMs when they

are used as main memory. The experimental results show that the

proposed algorithm can reduce the number of write activities on

NVM by 21.1% on average. In other words, the average lifetime of

NVM can be extended to at least 2 times longer than before and the

total schedule length is reduced by 19.6% on average.

1. INTRODUCTION

Chip multi-processors (CMP) have been the de facto design for

modern high-performance DSP processors. Non-Volatile Memories

(NVM), including Phase Change Memory (PCM), Flash Memory,

and Magnetic RAM (MRAM) have many advantages over DRAM

while they are applied as main memory for embedded systems due

to their attractive characteristics such as power-economy, low-cost,

high density, non-volatility, and shock-resistivity.

However, the NVMs have two drawbacks which need to be over-

come when used as main memory. 1) write activities take longer time

than read activities on NVM. 2) NVMs have a maximum number of

write operations that can be performed. In this paper, we propose

a loop scheduling algorithm to improve the parallelism and reduce

the schedule length while considering reducing the number of write

activities on non-volatile main memory.

In DSP applications, “loops” take the longest computation time

and consume the most energy. Many loop scheduling techniques

were proposed to reduce the schedule length of loops on multi-core

processors, such as retiming, rotation scheduling, etc. [2, 3, 6]. Re-

timing technique decreases the scheduling length for loops by evenly

distributing the delays [2]. Rotation technique is a iterative pipelin-

ing technique based on retiming to obtain a compact loop scheduling

under resource constraint. The above techniques work well when
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DRAM is used as main memory. However, when NVM is used as

main memory in a multi-core system, traditional rotation algorith-

m may cause degraded performance. This is because that in each

iteration of the rotation technique, the write activities in the main

memory may increase. Even though a short scheduling length can

be obtained through rotation, the total running time might degrade

due to the increased write activities to the non-volatile main memory.

Therefore, it is crucial to develop novel loop scheduling techniques

that can minimize loop schedule length as well as reduce the number

of write activities on NVM.

Many researchers have been addressing the problem of expen-

sive write activities in order to extend the lifetime of NVM when

they are applied as main memory. Hu et al. [4, 5] introduce data

migration and recomputation techniques to reduce write activities to

NVM. These two techniques can greatly reduce the write activities

from software part. However, in their paper, they only consider the

applications without loops. Furthermore, they did not propose any

scheduling algorithm. In this paper, we propose scheduling algo-

rithms for loops while reducing the write activities to the non-volatile

memory. The data migration and recomputation techniques can also

be combined with the scheduling algorithm proposed in this paper.

In this paper, we target CMPs with a Scratch Pad Memory (SP-

M) as its on-chip memory and NVM as its main memory. We pro-

pose the Rotation using Maximum Bipartite Match (RMBM) al-

gorithm that improves the loop parallelism, decreases the schedule

length, and reduces the number of write activities on non-volatile

main memory. In traditional rotation scheduling algorithm, in each

rotation phase, multiple computation tasks will be reassigned to new

cores. During reassignment of computation tasks, the traditional ro-

tation scheduling assigns cores to tasks randomly. In RMBM, maxi-

mum bipartite matching method is proposed to obtain the best reas-

signment with a minimum number of write activities while minimiz-

ing schedule length of loops. Furthermore, data migration and data

recomputation are combined into RMBM in order to minimize the

write activities.

The main contributions of our work include:

• We model tasks assignment problem in each rotation phase

as a maximum bipartite matching problem to reduce the write

activities.

• We combine data migration and data recomputation into ro-

tation technique to minimize the scheduling length of loops

and to reduce the number of write activities on NVM when it

is applied as main memory.

The remainder of this paper is organized as follows. Section 2
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Table 1. Initial schedule.
1. Initial Schedule. (4520 clock cycles and 7 write activities)

Steps 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Core 1

OP Load IW1 Load AR1 Task A WRITE AW1 Load AW1 Task C WRITE CW1
SPM1 IW1 IW1 AW1 AW1 CW1

SPM2 AR1 AR1 AR1 AR1 AR1 AR1

Core 2

OP Load AW1 Load DR1 Task D Load EW1 TASK G LOAD CW1 TASK I LOAD HW1 TASK J WRITE IW1 WRITE JW1

SPM1 AW1 AW1 DW1 DW1 EW1 GW1 CW1 IW1 IW1 IW1

SPM2 DR1 DR1 DR1 EW1 EW1 EW1 CW1 CW1 HW1 JW1

Core 3

OP Load JW1 LOAD BR1 TASK B WRITE BW1 LOAD BW1 LOAD ER1 TASK E WRITE EW1 LOAD FW1 TASK H WRITE HW1

SPM1 JW1 JW1 BW1 BW1 BW1 EW1 FW1 HW1

SPM2 BR1 ER1 EW1 EW2 EW2 EW2 EW2 EW2

Core 4

OP LOAD BW1 TASK F WRITE FW1

SPM1 BW1 BW1 FW1

SPM2

presents the hardware and software model. A motivational example

is also presented. Section 3 proposes the RMBM algorithm. The

experimental results are shown in Section 4 and finally this paper is

concluded in Section 5.

2. MODELS AND EXAMPLE

In this section, we will first introduce the architectural model and

software model. Then, a motivational example is presented to illus-

trate the motivation.

Core Core Core Core

Non−volatile
Memory

Bus

1 2 3 4

SPMSPMSPMSPM

Fig. 1. Example system with four cores.

We target embedded Chip Multiprocessors with Scratch Pad

Memory (SPM) as its on-chip memory and NVM as its main mem-

ory as shown in Figure 1. In this architecture, each core is equipped

with a SPM. As shown in Figure 1, all cores are connected to N-

VM via a bus. SPM is small on-chip memory component that is

managed by software, either by application program or through

automated compiler support. Nowadays, many DSP processors

are employing SPM rather than cache as their on-chip memories.

Examples of CMPs employing SPM include TI OMAP4470 [1].

In this paper, we model loops with Data Flow Graphs (D-

FGs). Formally, the input we consider in this paper is a DFG

G = 〈V,E, P,R,W, t, d〉. V = {v1, v2, v3, . . . , vn} is the set of n
tasks. E ⊆ V × V is the set of edges where (u, v) ∈ E means that

task u must be scheduled before task v. P = {p1, p2, p3, . . . , pm}
is the set of m pages that are accessed by the tasks. R : V → P ∗ is

the function where R(v) is the set of pages that task v reads from.

W : V → P ∗ is the function where W (v) is the set of pages that

task v writes to. t(v) represents the computation time of task v
while all the required data is in the cache. d is a function from E to

the nonnegative integers, and d(e) of an edge e equals the number

of delays (delay count) on edge e. The number of delays stands for

the number of previous iterations task v depends on u. The output is

a schedule of tasks, SPM data block replacement, and non-volatile

memory read and write operations.

After presenting the hardware and software model, an example

will be presented to illustrate that different task scheduling has d-

ifferent write activities and execution time. Assume there are four

cores in the example system as shown in Figure 1. Each core is

equipped with a SPM, and each SPM can hold two data. In the mo-

tivational example, we assume that reading a data from NVM takes

80 cycles; writing a data to NVM takes 800 cycles; a core accessing

its own SPM takes 2 cycles; and a core accessing data from other

core’s SPM takes 5 cycles. We assume each task takes 10 cycles to

finish in this example. The input of this example is a DFG as shown

in Figure 2. There are 10 tasks in the input graph. Each task has a

read set and a write set.

A B

C D E F

G H

I J

W:{AW1}
R:{IW1,AR1}

W:{BW1}
R:{JW1,BR1}

W:{JW1}W:{IW1}

R:{AW1}
W:{CW1}

R:{AW1}
W:{DW1}

R:{CW1,GW1}

W:{EW1,EW2}
R:{BW1}

R:{BW1}
W:{FW1}

W:{HW1}
R:{EW2,FW1}

R:{DW1,EW1}
W:{GW1}

R:{IW1,HW1}

Fig. 2. Example input graph.
In the initial schedule, we schedule the example DFG to run on

the example system with list scheduling. Under list scheduling, task

A and C are assigned in core 1. Task D, H, I, and J are assigned in

core 2. Task B and E are assigned in core 3. Task F is assigned in

core 4. A complete view of the execution of input task graphs with

memory accesses is presented in Table 1. In Table 1, the second row

shows step number. In each core, the first row shows the instructions

that are executed. The second row shows the content of the first SPM

block at each step and the third row shows the content of the second

block at each step. In the initial schedule, to finish these tasks in a

iteration needs 4520 clock cycles, and there are 7 write activities to

the NVM.

Rotation can be used to reduce the task scheduling length. We

notice that task C and D in current iteration are independent of task

A in the next iteration. Task E and F in current iteration are indepen-

dent of task B in the next iteration. Therefore, we can execute task

A and B in the first iteration by themselves. Then, for each of the

following iteration, we can move task A and B to previous iteration

to form a new iteration body. Task A and B are both independent of

all other tasks in this new iteration body. In this new iteration body,

task A and B can be scheduled at any step as long as the processor

core is available. By doing so, the cores can be utilized more ef-

fectively and task scheduling length can be reduced. There are many

available positions that A and B can be assigned to. Different assign-

ments will generate different number of write activities to the NVM
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Table 2. Rotation scheduling with the random reassignment.
2. Schedule after rotation using the random reassignment. (2000 clock cycles and 3 write activities)

Steps 1 2 3 4 5 6 7 8 9 10 11 12

Core 1

Load AW1 Task C write CW1 Load IW1r Load AR1r Task Ar

SPM1 AW1 AW1 AW1 IW1r IW1r AW1r
SPM2 CW1 AR1r AR1r

Core 2

Load AW1 Load DR1 Task D Load EW1 Task G Load AW1 Task C Task I Load HW1 Task J Write I Write J
SPM1 AW1 AW1 DW1 DW1 GW1 GW1 GW1 IW1 IW1 IW1

SPM2 DR1 DR1 EW1 EW1 AW1 EW1 CW1 HW1 JW1 JW1

Core 3

Load BW1 Load ER1 Task E Migrate EW1 Load BW1 Task F Task H Migrate HW1
SPM1 BW1 BW1 EW1 BW1 FW1 HW1 HW1 HW1

SPM2 ER1 EW2 EW2 EW2 EW2 EW2 EW2 EW2

Core 4

Load BW1 Load FR1 Task F Discard FW1 Load JW1r Load BR1r Task Br

SPM1 BW1 BW1 FW1 JW1r JW1r BW1r
SPM2 BR1r BR1r

Table 3. Rotation scheduling with bipartite matching algorithm.
3. Schedule after first rotation using the bipartite matching algorithm. (1815 clock cycles and 2 write activities)

Steps 1 2 3 4 5 6 7 8 9 10 11

Core 1

Load AW1 Task C Load IW1r Load AR1r Task Ar

SPM1 AW1 CW1 CW1 CW1 CW1 CW1 IW1r IW1r AW1r

SPM2 FW1 FW1 FW1 FW1 AR1r AR1r

Core 2

Load AW1 Load DR1 Task D Load EW1 Task G Load CW1 Task I Load HW1 Task J Write I Write J
SPM1 AW1 AW1 DW1 DW1 GW1 GW1 IW1 IW1 IW1

SPM2 DR1 DR1 EW1 EW1 CW1 HW1 HW1 JW1 JW1

Core 3

Load BW1 Load ER1 Task E Migrate EW1 Load FW1 Task H Migrate HW1
SPM1 BW1 BW1 EW1 FW1 HW1 HW1 HW1

SPM2 ER1 EW2 EW2 EW2 EW2 EW2 EW2

Core 4

Load BW1 Load FR1 Task F Load JW1r Load BR1r Task Br

SPM1 BW1 BW1 FW1 JW1r JW1r BW1r

SPM2 BR1r BR1r

and therefore affect the total execution time for each iteration.

Traditional rotation will assign task A and B randomly. One

possible assignment for A and B is that scheduling task A on core 1

at step 6 and scheduling task B on core 4 at control step 7. The full

schedule with all memory access information is shown in Table 2. In

this schedule, executing a loop iteration needs 3 write activities and

takes 2000 cycles.

Another better schedule can be obtained by assigning task A on

core 1 at step 9 and assigning task B on core 4 at step 6 as shown

in Table 3. The full schedule with all memory access information

is shown in Table 3. In this schedule, finishing a loop iteration on-

ly needs 2 write activities and takes 1815 cycles. Compared to the

traditional rotation scheduling, 1 write activity is eliminated and the

execution time of finishing a loop is reduced by 10%. Compared

with list scheduling, 5 write activities to NVM are eliminated com-

pared with the list scheduling and the execution time is reduced by

59.84%.

3. ALGORITHMS

In this section, we present the details of the proposed Rotation using

Maximum Bipartite Match (RMBM) algorithm. The RMBM algo-

rithm is based on the retiming technique [6] and rotation scheduling

[3].

3.1. The Rotation using Maximum Bipartite Match Algorithms

In this subsection, we will present the details of the Rotation using

Maximum Bipartite Match (RMBM) algorithm. The problem with

the traditional rotation scheduling is that during each phase of rota-

tion, the rotated tasks are reassigned to processor cores randomly. It

only considers the task scheduling length. However, in actual exe-

cution, other aspects like the off-chip memory accesses are equally

important in reducing the total execution time. In the RMBM algo-

rithm we devised a novel strategy to reassign the rotated tasks to the

cores.

Algorithm 3.1 Rotation using Maximum Bipartite Matching

Algorithm (RMBM)

Input: A DFG graph of tasks and number of cores.

Output: New schedule with fewer cycles, and fewer write activities

on non-volatile memory.

1: repeat
2: Find X ← rotatable tasks.

3: Retiming on the previous DFG graph

4: Change the control step (core ij)

5: L← the location that could be assigned to a new task

6: for Each(task ∈ X, core ij ∈ L) do
7: w← rotation benifit(task, core ij)
8: end for
9: Use maximum bipartite match algorithm to obtain a new as-

sign, in which
∑

w is maximum.

10: for Each node do
11: Find the migration path and compute cycles of in the mi-

gration path

12: Compute cycles of using recomputation

13: Compare cycles of migration, recomputation and write

14: Choose the method that produces a shorter cycles schedule

15: end for
16: until The schedule length is minimum.

Before presenting the details of the RMBM algorithm, we

define a benefit function rotation benefit. rotation benefit
is a function of the tasks and the processor cores. For exam-

ple, when the task A is assigned to core 1 at step 1, we use

rotation benefit(A, core 11) to denote the total benefits of this

assignment. rotation benefit equals to earn subtracting consum.

When node A can use the previous node’s data in the assigned core,
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Table 4. Experimental results.
Bench. task number control step write number read number cycle

List after rotation ASAP algorithm RMBM algorithms %W-L ASAP algorithm RMBM algorithms %W-R ASAP algorithm RMBM algorithms %W-C

IIR 8 4 3 3 2 33.3 7 6 14.3 1855 1050 43.3

2IIR 16 6 4 11 9 18.2 21 17 19.2 4345 3763 13.4

8 lattice 42 21 11 24 19 20.9 25 19 24 8560 7879 8.1

diff2 10 6 4 2 1 50 2 1 50 1710 835 51.2

deq 11 5 3 3 2 33.3 10 10 0 2625 1865 28.9

allpole 15 12 6 3 2 33.3 6 4 33.3 1965 1670 15.1

4 lattic 26 11 7 17 15 11.7 29 24 17.2 6330 5450 14.0

voltera 27 10 8 14 13 7.1 28 25 10.7 7790 6980 10.4

ellip 34 14 10 15 14 6.6 25 19 24 8260 7479 9.5

4latirr 52 15 13 29 26 10.3 46 45 2.0 9225 8425 8.9

2-4latirr 52 15 13 27 25 7.4 28 20 28.6 9005 7890 12.4

Average Improvement write number 21.1 read number 20.3 cycle 19.6

earn is the benefit of the cycles we can save compared to the cost

before rotation. consume includes two cases. The first case is the

cost of obtaining data from other cores while originally it can use

the data from its own SPM. The second case is the additional cost of

delivering the data to its children nodes while originally the children

nodes can use the data directly from the SPM.

The Rotation Using Maximum Bipartite Match (RMBM) Al-

gorithm is shown in Algorithm 3.1. The main idea of RMBM Al-

gorithm is that during each phase of rotation, rather than assigning

rotated tasks into random cores, we construct a bipartite graph with

the rotated tasks and cores. Then we compute rotation benefit
between each pair of task and core. Then, using maximum bipar-

tite algorithm to reassign these tasks to obtain an schedule that total

rotation benefit is maximum.

At the end of each phase of rotation, we construct a bipar-

tite graph M =< Vm, Em, w > as follows. Let X be the set

of cores and L be the set of rotated tasks. For each element in

X and L, we add a vertex into Vm. For each pair of elements

from X and L, we add an edge into Em. For each edge, we

compute the rotation benefit associated with it. w is the set of

rotation benefits. After the construction of bipartite graph M ,

we find a maximum bipartite matching in M . According to the

maximum bipartite matching, we will assign the tasks to the corre-

sponding cores in the matching. By doing this, we can reduce the

total time needed. Since write activities to the non-volatile memory

is the most time consuming part in this architecture, during the min-

imization of total execution time, the number of write activities to

the non-volatile main memory is also reduced.

In this paper, we use Ford-Fulkerson method to find a maximum

matching in M. The time complexity of Ford-Fulkerson method is

O(XL). retiming one time for the set X takes O(X) time. Then,

the time complexity of rotation a time using maximum bipartite basic

retiming is O(XL+X). Therefore, the time complexity of RMBM

Algorithm is O(V E + V ).

4. EXPERIMENTS

In this section, we present the experimental results. The effective-

ness of the RMBM algorithm is evaluated by running the DSPStone

benchmarks [8]. The DFGs are all extracted from gcc compiler and

then the DFGs are fed into a custom simulator.

In the set of experiments, there are 4 cores in the system and

each core has a SPM with capacity of 16KB. Table 4 shows the re-

sults of the RMBM algorithm compared with the ASAP algorith-

m [7], which is widely applied on loop scheduling to minimize the

schedule length of loops. The first column shows the benchmarks’

names. The second column shows number of tasks of each bench-

mark. The third and fourth columns show number of control steps

of initial schedule and rotation scheduling, respectively. The fifth to

seventh columns show results of number of write activities to NVM

of RMBM algorithm compared with ASAP algorithm. The eighth to

tenth columns and the eleventh to thirteenth columns show results of

number of read activities from NVM and execution time to finish one

loop iteration of RMBM algorithm compared with ASAP algorithm,

respectively. We can see from Table 4 that on average, the RMBM

algorithm can reduce the execution time to finish a loop interation

by 19.6%. Compared with ASAP algorithm, the RMBM algorithm

reduces the number of read activities from NVM of each loop by

21.1% on average. 5. CONCLUSION

In this paper, we propose the RMBM algorithm, which can signifi-

cantly reduce the programs’s schedule time and extend the lifetime

of NVM at the same time. The experimental results show that the

proposed algorithm can reduce number of write activities to NVM

by 21.1% on average. At the same time, the execution time is re-

duced by 19.6% on average.
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