
PARALLEL VIDEO DECODING IN THE EMERGING HEVC STANDARD

Mauricio Alvarez-Mesa1,2 ∗ , Chi Ching Chi1 †, Ben Juurlink1, Valeri George2, Thomas Schierl2

1Embedded Systems Architectures, Technische Universität Berlin, Berlin, Germany.
2Multimedia Communications, Fraunhofer HHI, Berlin, Germany.

ABSTRACT

In this paper we propose and evaluate a parallelization strat-

egy for the emerging HEVC video coding standard. The pro-

posed strategy is based on entropy slices which allows ex-

ploiting parallelism in the entropy decoding stage while main-

taining high coding efficiency. Our approach requires to en-

code videos with one entropy slice per LCU row in order to

decode multiple LCU rows in a wavefront parallel manner.

Evaluations performed on a PC with 12 Intel Xeon cores run-

ning at 3.3 GHz show that it is possible to achieve real-time

performance for 1920×1080p50 (53.1 fps) and 2560×1600

(29.5fps) video resolutions with speedups of 5.2× and 6.3×
compared to sequential execution, respectively.

Index Terms— HEVC, video codecs, parallel processing

1. INTRODUCTION

Recent demands on video coding support for high resolu-

tions such as 4k or UHD in consumer devices have further

driven the video coding development. Therefore, the Joint

Collaborative Team on Video Coding (JCT-VC) of ITU-T

and ISO/IEC MPEG has started a new project to develop a

new video coding standard aiming to reduce the bitrate of

H.264/AVC state-of-the-art High Profile [5] by another 50%.

The target application is beside 4k resolution, also the support

of native HD and mobile resolutions. The standard further

aims to support high quality color depth at 8 and 10 bit. Some

of the application use cases, which have been selected for the

first test model evaluation, are random access, such as used in

Video-on-Demand or Broadcast applications as well as low

delay for conversational applications. In order to take into

account the variety of user devices, high efficiency and low

complexity test cases have been defined, where the former

targets highly processing-capable devices and the latter tar-

gets low-complexity such as embedded devices. The HEVC

project started in 2010 and is scheduled for finalization in

2012/2013. The project development is implemented into

the HEVC test Model (HM), which is the reference soft-

ware following the standard developments. In this paper, we

∗M. Alvarez has been supported by the HiPEAC European Network.
†C. C. Chi has received funding from the ENCORE European Project

(contract n◦ 248647).

Fig. 1: General diagram of HEVC decoder

propose parallelization strategies and improvements for an

HEVC software realization to support real-time HD and near

real-time 4k on a standard PC platform.

2. OVERVIEW OF HEVC

HEVC is based on the same structure as prior hybrid video

codecs like H.264/AVC but with enhancements in each cod-

ing stage [8]. HEVC includes a prediction stage composed of

motion compensation and spatial intra-prediction, an integer

transform applied to prediction residuals, and an entropy cod-

ing stage that uses either arithmetic coding or variable length

coding. Also, as in H.264/AVC, an in-loop deblocking filter

is applied to the reconstructed frame. Fig. 1 depicts a general

diagram of the HEVC decoder and its coding stages.

An important difference of HEVC compared to H.264/AVC

is the frame coding structure. In HEVC each frame is divided

into Largest Coding Units (LCUs) that can be recursively

split into smaller Coding Units (CUs) using a generic quad-

tree segmentation structure. CUs can be further split into

Prediction Units (PUs) used for intra- and inter-prediction

and Transform Units (TUs) defined for transform and quanti-

zation.

HEVC also includes two new filters that are applied af-

ter the deblocking filter: Sample Adaptive Offset (SAO) and

Adaptive Loop Filter (ALF). In the SAO filter the entire pic-

ture is considered as an hierarchical quadtree. For each sub-

quadrant in the quadtree the filter can be activated by trans-

mitting offset values that can either correspond to the intensity

band of pixel values (band offset) or the difference compared

to neighboring pixels (edge offset). ALF is designed to min-

imize the distortion of the decoded frame compared to the

1545978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

original one. It uses a Wiener filter that can be activated at the

CU level using coefficients encoded at the slice level.

3. PARALLELIZATION OPPORTUNITIES

3.1. Slice- and Block-level Parallelism

Previous video codecs, e.g. H.264/AVC, have been paral-

lelized using slice-level or block-level parallelism. In case of

slice-level parallelism, a frame is split in several slices which

are completely independent from each other. Multiple threads

can be used to process the slices of a single frame in parallel,

increasing the throughput and decreasing the frame latency at

the same time.

Having more slices in a frame, however, reduces coding

efficiency significantly due to three reasons. First, the entropy

coding is less efficient due to breaking up the training of the

context models and the inability to cross slice boundaries for

context selection. Second, in the prediction stage the pixels

from neighboring slices cannot be used. Finally, for each slice

an additional slice header and start code needs to be present

in the bitstream [9].

Block-level parallelism does not rely on having multiple

slices in a frame, and does not have the associated coding

losses. Instead coding blocks (macroblocks in H.264/AVC

and LCUs in HEVC) inside a frame can be reconstructed in

parallel using a wavefront approach to satisfy the prediction

and filtering dependencies. The entropy decoding, however,

cannot be parallelized on the block-level, and has to be per-

formed sequentially for an entire frame. Multiple frames,

however, can be entropy decoded in parallel [4]. This ap-

proach, however, introduces the need for frame buffers to hold

the entropy decoded syntax elements, and can only reduce the

frame latency of the reconstruction and filtering stages.

3.2. Entropy Slices

HEVC introduces a new coding tool, entropy slices [7], and

different from regular slices, entropy slices have been de-

signed for parallelism instead of error resilience. In both en-

tropy and regular slices, context models are initialized at the

beginning of each slice. The main difference is that in the

reconstruction and filtering phases, it is allowed to use data

of neighboring blocks across slice boundaries. Also entropy

slice headers are smaller than regular slice headers, because

common header data is only sent in the first slice header of a

frame.

Until now entropy slices have only been considered as

a parallelization tool for the entropy decoding stage. With

entropy slices multiple threads can entropy decode the same

frame which is beneficial to lower the frame latency in de-

signs using block-parallelism. A large frame buffer is still

required to store the entropy decoded data, since the entropy

decode stage is still decoupled from the reconstruction and

filtering. In our approach this frame buffer is not required as

we combine the entropy decode stage with the reconstruction

and filtering stages, without reducing parallelism or coding

efficiency.

4. PARALLEL DECODING WITH ENTROPY SLICES

To combine the entropy decoding with the reconstruction

and filtering phases, the entropy decoding dependencies must

match the dependencies of the reconstruction and filtering

phases. The reconstruction and filtering phases in HEVC

exhibit the same wavefront dependencies as in H.264/AVC,

and only differ in the coding block size. The wavefront de-

pendencies restrict the parallelism to one block per block

row. Currently, the number of entropy slices per frame is

chosen arbitrary based on a fixed number of LCUs or byte

size. This results in irregular slice shapes, that do not match

the wavefront dependencies. Instead to match the wavefront

dependencies a one entropy slice per row encoding approach

must be enforced.

The BD-rate [2] losses that we have obtained (for the

luma component) using one entropy slice per row are 5.4%

and 6.3% for 2560×1600 and 1920×1080 resolutions, re-

spectively. Enforcing a one slice per row encoding approach,

allows context propagation between LCU rows in a wavefront

manner, which was not present in our HM base code. Results

show that the BD-rate losses are reduced to 1.7% and 1.3%

for the same resolutions when using context propagation [6].

In our approach, the HEVC decoder can be parallelized

by assigning one thread per LCU row. In each, so-called, line

decoder thread the LCUs in a row are processed one-by-one.

The entropy decode, reconstruct, and deblock vertical edge

filter can be performed for the current LCU. In HM-3.0 the

deblocking of the horizontal edges must overtake the deblock-

ing of the vertical edges, and, therefore, has to be delayed by

one LCU. This also in turn delays the SAO filter as it operates

on the deblocked output image and, therefore, cannot proceed

until the lower and right edges are deblocked. The SAO filter

has to be performed on the upper left LCU, for which all the

deblocked image data is available. The decoding order of the

stages and the corresponding modified pixels for one LCU are

illustrated in Fig. 2.

To maintain the wavefront dependencies the line decoder

threads are synchronized using the Ring-Line strategy [4].

Using the Ring-Line strategy an arbitrary number of line

decoders threads can be used to decode the picture in a

line interleaved manner. The dependencies are maintained

efficiently using a ring synchronization approach. Fig. 3

shows the wavefront progression when using four line de-

coder threads.

The ALF is the last filtering step and is performed for the

entire picture in a separated pass, and could not be be com-

bined due to a misplacement of the ALF syntax elements. The

ALF is LCU independent and can be executed for each block

in parallel. In our implementation, to reduce cache line con-

1546

Reconstruction

Deblock ver. edges

Deblock hor. edges

SAO filtering

Fig. 2: The decoder stages are applied on different adjacent

LCUs to maintain the kernel dependencies. Each square rep-

resent a 4×4 pixels.

T1

T2

T3

T4

T1

Fig. 3: Wavefront progression of the combined stages. The

colors denote the same stages as in Fig. 2 and show the decod-

ing progress of each stage, before starting the entropy decode

of the hatched blocks.

flicts and synchronization overhead, eight consecutive LCUs

are grouped in a work unit and processed by a single core.

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

We have implemented our parallel HEVC decoder on top of

the HM-3.0 reference decoder [1]. We selected the Random

Access High Efficiency (RA-HE) “profile” which targets the

most demanding application scenarios of the current HEVC

proposal.

Table 1 shows the main encoding parameters of the JCT-

VC common conditions [3]. All the videos from the HEVC

test sequences are encoded using these parameters with the

HM-3.0 reference encoder. Due to space reasons, and be-

cause we are mainly interested in high definition applications,

we only present results for class A (2560×1600 pixels) and

class B (1920×1080 pixels) sequences. Additionally, we also

evaluated 4K videos (3840×2160) from the SVT High Defi-

nition Multi Format Test Set. We will refer to these as class S

sequences.

For our parallel decoding experiments we used a cache-

coherent shared memory machine with two Intel Xeon X5680

processors that have 6 cores each. Main parameters of the

architecture and software environment are listed in Table 2.

Options Value

Max. CU Size Width 64×64
Max. Partition Depth 4
Period of I-frames 32
Number of B-frames (GOPSize) 8
Number of reference frames 4
Motion Estimation Algorithm EPZS
Search range 64
Entropy Coding CABAC
Adaptive Loop Filter (ALF) enabled
Sample Adaptive Offset (SAO) enabled
Quantization Parameter (QP) 22, 27, 32, and 37

Table 1: Coding Options

System Software

Processor Intel Xeon X5680 Boost C++ 1.42.1
ISA X86-64 Compiler GCC-4.5.2
μarchitecture Westmere Optimization level -O3
Sockets 2 Operating system Ubuntu 11.04
Cores/socket 6 Kernel 2.6.38-8
SMT disabled HEVC base software HM-3.0 [1]
Clock frequency 3.33 GHz
Level 3 cache 12MB / socket
TurboBoost disabled

Table 2: Experimental setup

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12

A
ve

ra
ge

 s
pe

ed
up

Number of threads

Class S: 3840x2160
Class A: 2560x1600
Class B: 1920x1080

Fig. 4: Speedup. Baseline (0) is the sequential code

5.2. Speedup

Fig. 4 shows the average speedup for the three sequence

classes under study. The average speedup represents the

average of the speedups of the individual sequences in the

class with 4 different QP values, each executed 5 times. The

speedup of the individual sequences deviates at most 6% from

the average. The speedup is computed against the original

sequential code (thread 0) and is presented along with the

parallel code using one core (thread 1). The speedup curves

show that the parallel efficiency is relatively high for low core

counts (82% for 4 cores) and decreases with a high core count

(53% for 12 cores). With higher resolutions higher speedups

are achieved.

1547

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10 12

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
pe

r
fr

am
e

[s
]

Number of threads

Sequential
ALF

ED+REC+DF+SAO

Fig. 5: Breakdown of execution time for class A sequences

5.3. Execution Profile and Performance

Fig. 5 shows the execution time contribution to the average

frame execution time of the sequential part, the wavefront part

(Entropy Decoding (ED), Reconstruction (REC), Deblocking

Filter (DF) and SAO), and the ALF part. The contribution

to the total execution time with 12 cores is 19%, 63% and

18%, respectively. Due to its massively parallel nature the

ALF part reduces almost linearly with the number of threads.

The wavefront part also reduces but reaches a saturation point.

The sequential part, consisting mostly of the bitstream parsing

and header decoding, stays constant, but increases its fraction

of the total execution time according to Amdhal’s law.

Table 3 shows the speedup of the parallel parts and the

performance in frames per second at the highest core count.

The ALF section exhibits almost linear speedup (efficiency of

88%). The wavefront part has a lower efficiency (57%). With

12 cores our parallel decoder achieves real-time performance

for 1080p50 and is close to achieve it for 2560×1600p30.

Additional optimizations (such as SIMD vectorization) can be

applied to increase the single threaded performance to reduce

the number of cores needed to achieve real-time performance.

The parallel efficiency of the wavefront stage can also be

improved significantly by overlapping execution of consec-

utive frames. This requires the ALF to be included in the

wavefront to be able to reference the partially completed pre-

vious frame. In HM-3.0 the ALF could not be combined in

the wavefront, because the complete ALF flag array is trans-

mitted in the first slice header of the frame, requiring the CU

index relative to the start of the frame for indexing. In the

most recent HM this is solved by transmitting the ALF flag

array partitioned over the entropy slice headers, allowing the

flag array to be indexed with the CU index relative to the start

of the slice.

Video Class ‘S’ A B

Num. entropy slices 34 25 17

Max. processors 12 12 12

ED+REC+DF+SAO speedup 7.94 7.24 5.35

ALF speedup 11.15 10.62 9.98

Total speedup 7.35 6.62 5.20

Frames per second 15.38 29.54 53.15

Table 3: Speedup and frames per second at highest core count

6. CONCLUSIONS

In this paper we have proposed and evaluated a parallelization

strategy for the emerging HEVC video codec. The proposed

strategy requires that each LCU row constitutes an entropy

slice. The LCU rows are processed in a wavefront parallel

fashion by several line decoder threads using a ring synchro-

nization. The presented implementation achieves real-time

performance for 1920×1080 (53.1 fps) and 2560×1600 (29.5

fps) resolutions on a 12-core Xeon machine.

The proposed parallelization strategy has several desirable

properties. First, it achieves good scaling efficiency at mod-

erate core counts. Second, the number of line decoders can

be chosen to match the processing capabilities of the comput-

ing hardware and the performance requirements. Third, us-

ing more cores increases the throughput and at the same time

reduces the frame latency, making the implementation both

suitable for low delay and high throughput use scenarios.

A limitation is the scaling efficiency at higher core counts.

This is caused by the sequential part and the ramp-up and

ramp-down efficiency losses of the wavefront parallel part. In

future work this can be solved by pipelining the sequential

part and overlapping the execution of consecutive frames.

7. REFERENCES

[1] HM-3.0 Reference software. https://hevc.hhi.fraunhofer.
de/svn/svn_HEVCSoftware/tags/HM-3.0/, 2011.

[2] G. Bjontegaard. Calculation of average PSNR differences between RD-

curves. Technical Report VCEG-M33, ITU-T Video Coding Experts

Group (VCEG), 2001.

[3] F. Bossen. Common test conditions and software reference configura-

tions. Technical Report JCTVC-E700, Jan. 2011.

[4] C. C. Chi and B. Juurlink. A QHD-capable parallel H.264 decoder. In

Proc. of the Int. Conf. on Supercomputing, pages 317–326, 2011.

[5] Advanced Video Coding for Generic Audiovisual Services. ITU-T Rec-

ommendation H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), 2003.

[6] F. Henry, K. Misra, S. Pateux, and A. Segall. Combined proposal

JCTVC-E196 and JCTVC-E409. Technical Report JCTVC-E470,

March 2011.

[7] K. Misra, J. Zhao, and A. Segall. Entropy slices for parallel entropy

coding. Technical Report JCTVC-B111, July 2010.

[8] G. J. Sullivan and J.-R. Ohm. Recent developments in standardization of

high efficiency video coding (HEVC). In Applications of Digital Image
Processing XXXIII. Proceedings of SPIE Volume: 7798, 2010.

[9] V. Sze and A. P. Chandrakasan. A high throughput CABAC algorithm

using syntax element partitioning. In Proceedings of the 16th IEEE in-
ternational conference on Image processing, pages 773–776, 2009.

1548

