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ABSTRACT

In this paper we demonstrate a simple and novel illumination model
that can be used for illumination invariant facial recognition. This
model requires no prior knowledge of the illumination conditions
and can be used when there is only a single training image per-
person. The proposed illumination model separates the effects of
illumination over a small area of the face into two components; an
additive component modelling the mean illumination and a multi-
plicative component, modelling the variance within the facial area.
Illumination invariant facial recognition is performed in a piecewise
manner, by splitting the face image into blocks, then normalizing the
illumination within each block based on the new lighting model. The
assumptions underlying this novel lighting model have been verified
on the YaleB face database. We show that magnitude 2D Fourier
features can be used as robust facial descriptors within the new light-
ing model. Using only a single training image per-person, our new
method achieves high (in most cases 100%) identification accuracy
on the YaleB, extended YaleB and CMU-PIE face databases.

Index Terms— facial recognition, illumination invariance,
lighting model, limited training data

1. INTRODUCTION

The problem of facial recognition under realistic lighting has re-
cently received much research attention and several major ap-
proaches have been explored including: illumination modelling,
photometric normalisation and illumination invariant representa-
tions. In this paper we study facial identification given unknown
realistic lighting, with a single training image per-person.

The standard theory of facial illumination is the Retinex model [1].
In the Retinex model, lighting is assumed to be represented by the
low-frequency spatial components of the face image. This moti-
vates a number of recognition approaches aimed at recovering an
illumination invariant facial representation by removing the low-
frequency components from a given face image. In self quotient
imaging (SQI) [2] the illumination information is approximated by a
smoothed version of the face, which is subtracted from the logarithm
of the facial image intensity, yielding an ‘invariant’ facial represen-
tation. The performance of SQI can be improved by using non-local
means de-noising to better estimate the facial illumination [3]. Sim-
ilar filtering can be performed in the frequency domain, using filters
based on the Fourier [4] or DCT [5] transforms. Both spatial and fre-
quency domain filtering encounter problems with ‘haloing’ at sharp
edges caused by cast shadows which can be somewhat alleviated
by using multi-scale filters to better approximate the illumination
information [6]. Retinex theory has also been used derive feature
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representations which are invariant under illumination change, such
as Gradientfaces [7] or local ternary patterns [8].

Our new approach extends the Retinex illumination model to
express illumination as a piecewise-constant function over the face
image. We empirically demonstrate, using the YaleB face database,
that over a small area of the face, illumination can be modeled as two
constant components. An additive component representing the shift
in pixel mean with illumination and a multiplicative component rep-
resenting the pixel variance. Using this simple illumination model,
both illumination components can by normalized for each small area
of the face, allowing facial recognition to be performed despite large
variations in illumination.

2. ILLUMINATION MODEL

In the Retinex model [1], the intensity of every facial image pixel
I(x, y) is dependent on the intrinsic reflectivity (or albedo) of the
face R(x, y) and the lighting conditions L(x, y). We can express
this model as

I(x, y) = R(x, y)L(x, y) (1)

In order to perform illumination invariant facial recognition, we must
recover the invariant reflectance information R(x, y) given only the
pixel intensity values I(x, y).

It has been observed that in realistic facial images the illumina-
tion information varies slowly over the face image i.e., the illumina-
tion information L(x, y) is present at low spatial frequencies while
the intrinsic reflectance information R(x, y) is present at higher spa-
tial frequencies. Using this observation we can assume that over a
small area of the face image, illumination L(x, y) is approximately
constant. We propose an illumination model which separates the ef-
fects of illumination over a small area of the face image into two
components. The first component is additive, modeling the change
of the mean pixel intensity in the area, which varies with illumina-
tion. The second component is multiplicative, modeling the change
of the variance of the pixel intensity in the area. Let φ represent
a small area over a given face image. The observed pixel intensity
I(x, y) within φ can thus be expressed as:

I(x, y) ≈ kφR(x, y) + cφ ∀(x, y) ∈ φ (2)

where R(x, y) corresponds to the intrinsic reflectance information
to be retrieved for recognition, cφ represents an additive bias, and
kφ represents a multiplicative factor. Together cφ and kφ model the
variation of lighting conditions under which R(x, y), ∀(x, y) ∈ φ, is
observed. We assume that for a small area φ, both cφ and kφ are ap-
proximately constant. Previous approaches based on removal of low
frequency coefficients, or on homomorphic filtering, are attempts at
removing the constants cφ and kφ. In this paper, we propose a novel
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method for illumination invariant facial recognition based on the il-
lumination model (2). This is achieved by dividing each facial im-
age into small sub-images such that each sub-image can be modeled
by (2). Then, we use a cosine similarity function combined with
mean removal to simultaneously remove cφ and kφ.

3. ILLUMINATION INVARIANT FACE RECOGNITION

3.1. Illumination Invariant Similarity Measure

We compare realistically illuminated training and test face images.
Both face images are aligned and divided into small blocks. For each
block φ, we can remove the constant additive bias cφ by subtracting
the local mean from the block (more details of the mean removal will
be discussed later). Then, corresponding blocks may be compared
by using a cosine similarity measure that is invariant to the constant
multiplier kφ. (Note: it possible to normalize the multiplier kφ using
the block variance, allowing a different similarity measure e.g. Eu-
clidean distance to be used; this will be discussed later). The cosine
similarity C(a,b) between two vectors a = (a1, a2, . . . , aN ) and
b = (b1, b2, . . . , bN ), can be expressed as

C(a,b) =
a.b

‖a‖‖b‖ (3)

Cosine similarity calculates the cosine of the angle between two vec-
tors. It can be shown that the cosine similarity C(ka, lb) between
two new vectors, ka and lb, which are a and b each subject to con-
stant scalar multipliers k and l respectively, equals C(a,b)

C(ka, lb) =
ka.lb

‖ka‖‖lb‖
=

kla1b1 + · · ·+ klaNbN√
(ka1)

2 + · · ·+ (kaN )2
√

(lb1)
2 + · · ·+ (lbN )2

=
kl(a1b1 + · · ·+ aNbN )

kl
√

(a1
2 + · · ·+ aN

2)
√

(b1
2 + · · ·+ bN

2)

=
a.b

‖a‖‖b‖ (4)

Here a and b can be two image blocks and k and l correspond to
their respective multiplicative illumination factor. Eq. (4) then offers
an illumination-invariant similarity measure between the two image
blocks. Let X = (X1, X2, . . . , XM ) represent a training face image
and Y = (Y1, Y2, . . . , YM ) represent a test face image, both divided
into M aligned small blocks where Xm and Ym denote the mth

block in X and Y . It can be shown that the cosine similarity between
the two full images X and Y can be approximated by the sum of the
cosine similarities between their constituent blocks [9]. In this paper,
we use the expression:

C(X,Y ) �
M∑

m=1

C(Xm − X̄m, Ym − Ȳm) (5)

where X̄m and Ȳm represent the mean pixel intensity of blocks Xm

and Ym respectively. This illumination invariant similarity measure
can be viewed as finding the Pearson correlation coefficient between
the local facial areas Xm and Ym.

3.2. Feature Representation

So far we have assumed that the feature vector representing each
facial block is formed by concatenating the pixel intensity values

of the block. However, the block-by-block comparison of two fa-
cial images rests on the assumption that both facial images are very
well aligned. Small changes in an individual’s facial expression and
head pose mean that even well aligned facial images captured under
controlled conditions will not correspond exactly. Facial blocks can
instead be represented using their magnitude 2D Fourier representa-
tion. By taking the magnitude, we omit the phase information, which
allows us to take advantage of the shift invariance of the magnitude
Fourier representation. This means the system should be more robust
to small misalignment errors and small facial expression changes.

Apply 2D Fourier transform to the illumination model (2)

I(u, v) � kφR(u, v) + cφ (6)

where I(u, v) and R(u, v) are the Fourier transforms of I(x, y) and
R(x, y), respectively. We ignore the 0th Fourier coefficient I(0, 0),
which is equivalent to subtracting the block mean in (5). Thus we
obtain an illumination model for the magnitude Fourier features

||I(u, v)|| � kφ||R(u, v)|| (u, v) �= (0, 0) (7)

Using the magnitude Fourier image representation, (5) can be rewrit-
ten as

C(X,Y ) �
M∑

m=1

C(||Xm||, ||Ym||) (8)

where ||Xm|| is the magnitude Fourier representation of image block
Xm with mean removed (likewise for ||Ym||). Next we show the use
of (8) for facial recognition with varying lighting conditions.

4. EXPERIMENTS

We now test the performance of our proposed illumination invari-
ant facial recognition system on faces with realistic lighting. We
perform experiments using the YaleB, extended YaleB and CMU-
PIE facial databases. The YaleB database contains the frontal face
images of 10 persons, each captured under 64 illumination condi-
tions. The extended YaleB database adds an additional 28 persons,
captured under the same conditions as the YaleB database, increas-
ing the total number of persons to 38. During testing we divide the
face images from each person into 5 subsets dependent on illumi-
nation angle: subset 1 (0◦ − 12◦), subset 2 (13◦ − 25◦), subset
3 (26◦ − 50◦), subset 4 (51◦ − 77◦), and subset 5 (78◦ − 90◦).
Example images from each subset of YaleB 6are shown in Fig. 3.
The CMU-PIE database consists of 68 persons illuminated from 21
directions.

4.1. Experimental Test of Lighting Model

In this experiment we test the assumptions underlying our lighting
model (2) , i.e. that lighting can be modeled as a constant change
in both the mean and variance of pixel intensities in a small facial
area. For the first part of this experiment we use Euclidean distance,
rather than cosine similarity to compare blocks, demonstrating the
generality of our lighting model. This experiment was conducted on
the YaleB face database using non-overlapping blocks, represented
by pixel intensity feature vectors. The block size was varied linearly
from 2 × 2 pixels to the whole image size of 168 × 192 pixels, in
order to find the range of block sizes for which our assumption of
constant illumination holds. A single facial image per-person from
subset 1 was used for training and all other images were used for
testing. First, baseline identification accuracies using Euclidean dis-
tance and no illumination compensation were found. The experi-
ment was then repeated using three modified feature representations:
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Fig. 1. Average identification accuracy (%) over all subsets of YaleB,
using Euclidean distance, plotted as a function of block size. Thick
solid line - block mean and variance normalized. Dotted line -
block mean normalized. Thin solid line - block variance normalized.
Dashed line - no illumination compensation.

block mean cφ normalized, then with block variance kφ normalized
so the values in each block had unit range, and finally with both
block mean and variance normalized. The results of this experiment
are shown in Fig. 1. We can see from Fig. 1 that normalising the
block mean improves identification accuracy over the baseline. Nor-
malising only the block variance generally has an unpredictable ef-
fect on accuracy and for certain block sizes performs worse than the
baseline. The best identification accuracy is consistently achieved
when both the mean and variance of each block have been normal-
ized. Due to the trade-off between the illumination invariance and
discriminative ability of each block size, accuracy remains highest
while the block size remains relatively small. Maximum average
identification accuracy occurs at a block size of 3× 3 pixels, which
is larger than the minimum block size of 2× 2 pixels, reflecting the
invariance/discrimination trade-off. As block size is increased, our
assumption of constant illumination within each block becomes in-
valid, so identification accuracy tends to decrease. The results of this
experiment support our hypothesis that over a small facial area, illu-
mination can be modeled by two constant components: a change in
both the mean and variance of the pixel values.

Having verified the effectiveness our illumination model using
euclidean distance and pixel intensity features, we next performed
a similar experiment on the YaleB database using cosine similarity
and magnitude 2D Fourier features. We use cosine similarity rather
than normalized Euclidean distance for the remainder of these ex-
periments as when both measures were compared in further testing
(results not shown due to space constraints), cosine similarity was
found to give slightly better accuracy. Block size was varied system-
atically from 2 pixels to 50 pixels in each dimension. Any blocks
overlapping the image edge were padded with zeros. A single evenly
illuminated image from subset 1 was used as training for each per-
son. Testing was performed using all the remaining images from all
subsets. All faces images were 168 × 192 pixels and were not re-
sized. As a preprocessing step, each face image was convolved with
a 3× 3 Gaussian kernel to reduce noise in the shadow areas, as this
has been found to increase identification accuracy.

Fig. 2 shows mean identification accuracy over all 5 illumina-
tion subsets as a function of block size. We again observe a trade-off
between illumination invariance and discriminative ability as block
size is varied. Maximum identification accuracy occurs when block
size is 6 × 7 pixels. This optimal block size differs slightly from
the previous experiment, demonstrating that the trade-off between

discriminative ability and illumination invariance is dependent on
the feature representation. It should be noted that while block size
remains small, average identification accuracy remains consistently
high i.e. the variance in average identification accuracy for block
sizes close to 6 × 7 pixels is less than 1%. This shows that our
system is robust to changing block size, and the high identification
accuracy is not the result of over-fitting parameters to this particular
database. However, we also note that using smaller blocks may make
our system more sensitive to misalignment errors, and we return to
this problem in the next section. In Table 1 we compare the optimal
results produced by our system using 6× 7 pixel blocks to represen-
tative results from the literature which also used a single face image
per person for training.

Table 1. Percentage accuracy of our facial identification system
compared to example systems in the literature, trained with a sin-
gle facial image and tested under the same conditions on YaleB.

Our Gradientfaces Adaptive Weiner
Subset System [7] [10]

1 100 100 100
2 100 100 100
3 100 99.76 100
4 100 96.23 94.29
5 99.57 99.47 98.42

4.2. The Effect of Features on Identification Accuracy

We hypothesised in Section 3.2 that using magnitude Fourier fea-
tures would lead to improved accuracy compared to pixel intensity
features, as magnitude Fourier features omit the phase information
from each block, making them more robust to small misalignment
errors. We test this hypothesis by comparing the identification ac-
curacy when representing each block using magnitude 2D Fourier
features, pixel intensity features, and 2D discrete cosine transform
(DCT) features. The DCT is a Fourier derived transform that rep-
resents a real-valued signal as the linear sum of a series of real co-
sine basis functions, and thus does not have the ability to discard the
phase of a signal. We therefore expect the accuracy when using 2D
DCT features to decrease compared to magnitude 2D Fourier fea-
tures. This experiment was performed using the YaleB face database
with a single face image per-person for training and all the other
images from all subsets used for testing. We used cosine similar-
ity to compare blocks and the optimal block size of 6 × 7 pixels.
When using pixel intensity features we subtracted the block mean
from each block, and when using DCT features the 0th DCT coeffi-
cient was discarded as it corresponds to the block mean. The results
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Fig. 2. Average identification accuracy (%) over all subsets of YaleB,
using Cosine similarity. Results shown as a function of block size.
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of this experiment are presented in Table 2. As expected magnitude
Fourier features produce better accuracy than 2D DCT features or
pixel intensity values, which supports our hypothesis that magnitude
Fourier features show increased robustness due to the omission of
phase information.

Table 2. Percentage accuracy of our facial identification system
when tested using 2D magnitude Fourier, 2D DCT and pixel intensity
feature types on YaleB database.

Subset 2D mag. Fourier 2D DCT Pixel Intensity

1 100 100 100
2 100 100 100
3 100 99.00 99.00
4 100 93.33 93.33
5 99.57 93.04 93.04

4.3. Enhancing Identification Accuracy

The identification accuracy of our system can be enhanced by a num-
ber of simple modifications to our original algorithm. As the iden-
tification accuracy of our system on YaleB is almost 100%, we now
move to the extended YaleB database, which was captured under the
same conditions as YaleB but includes 38 persons. Baseline iden-
tification accuracy on the extended YaleB database using our above
described system is shown in Table 3 under ‘Original System’.

The first modification is to extract features using overlap-
ping blocks, as opposed to our original system which used non-
overlapping blocks. Blocks were overlapped by 50% in each di-
mension, using the same 6 × 7 block size as previous experiments.
Using overlapping blocks has the effect of reducing discontinuities
that may occur near edges such cast shadows. The results, in Ta-
ble 3, show that overlapping blocks improves accuracy compared to
our original system. Identification accuracy can be further enhanced
by preprocessing each facial image using a band-pass filter. This
filtering approach is similar to self quotient imaging (SQI) [2], in
assuming that low spatial frequencies represent illumination infor-
mation, while high spatial frequencies represent noise. Band-pass
filtering was implemented using 3 × 3 and 9 × 9 Gaussian kernels.
After this preprocessing step, the band-pass filtered face image was
processed in the usual manner by our originally described system.
The band-pass filtering results are shown in Table 3. By combining
feature extraction using overlapping blocks with a band-pass filter
preprocessing step, identification accuracy can be improved again.
Results for the combined system are shown in Table 3 and are com-
parable with the best existing systems [8]. Additionally, when tested
on the original YaleB database our enhanced system achieves 100%
identification accuracy on all lighting subsets. Finally, we tested
our enhanced system on the CMU-PIE database which contains 68
individuals illuminated from 21 directions. Using a single training
image per-person and the same parameters as the YaleB database,
100% identification accuracy was achieved.

5. CONCLUSION

In this paper we have demonstrated a simple and novel illumination
model for facial recognition under realistic illumination conditions.
We model the effects of illumination over a small facial area using
a piecewise-constant function with separate multiplicative and addi-
tive components. We have shown that magnitude 2D Fourier features
can be used as robust facial descriptors. Our tests have shown that
the novel illumination model achieves very high identification accu-
racy on the YaleB, extended YaleB and CMU-PIE facial databases.

Table 3. Percentage accuracy of our facial identification system
tested on the extended YaleB database, with overlapping block fea-
ture extraction and band-pass filter preprocessing of image.

Subset Original Overlap Bandpass Bandpass +
System Overlap

1 99.62 100 100 100
2 100 100 100 100
3 97.89 98.42 99.74 100
4 91.29 93.97 99.78 100
5 88.80 91.80 96.42 97.11
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Fig. 3. Example images form each of the five illumination subsets of
the YaleB database for one subject. The neutral condition, subset 1
is shown on the left, with illumination angle increasing to the right.
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