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ABSTRACT

The problem of human detection is challenging, more so, when faced
with adverse conditions such as occlusion and background clutter.
This paper addresses the problem of human detection by represent-
ing an extracted feature of an image using a sparse linear combina-
tion of chosen dictionary atoms. The detection along with the scale
finding, is done by using the coefficients obtained from sparse rep-
resentation. This is of particular interest as we address the problem
of scale using a scale-embedded dictionary where the conventional
methods detect the object by running the detection window at all
scales.

Index Terms— Human Detection, Histogram of Oriented Gra-
dients(HOG), l1-norm minimization, Sparse representation, Scale-
embedded Dictionary

1. INTRODUCTION

Human detection in images is a difficult task owing to variable ap-
pearance and wide range of poses that they can adopt. It usually in-
volves two steps, namely, feature extraction and classification. The
conventional object detection methods detect the object by scanning
the image at several scales. The obvious disadvantage of this ap-
proach is that it is computationally expensive. To overcome this, a
new object detection algorithm based on scale-embedded dictionary
is proposed using sparse representation. Sparse representations [1]
represent the test sample as a sparse linear combination of a small
number of elementary signals called atoms (positive class atoms,
negative class atoms and trivial atoms) of a dictionary (D). The
advantage of scale embedded dictionary is that, it reduces the need
to run the detector across various scales and hence the computation
time for object detection. Also, there is no need of rigorous training
as required in learning phase of the conventional classifiers like SVM
and AdaBoost. The number of positive and negative class atoms are
designed to be less than the number of trivial atoms, leading to a
sparse coefficient vector. In the case of occlusion, noise corruption
or background clutter, a limited number of trivial coefficients spike,
although the coefficient vector remains sparse. The object detection
is performed using these coefficients obtained from sparse represen-
tation.

The rest of the paper is organized as follows. In the following
section we describe the related work on human detection. In section
3, we describe the the proposed method. We discuss the reported
results in section 4 along with performance evaluation. Finally we
conclude in last section.

2. RELATED WORK

Histogram of Oriented Gradients (HOG) introduced by Dalal and
Triggs [2] based on the distribution of intensity gradients uses sin-
gle detection window approach. Papgeorgiou and Poggio [3] also
used single-detection-window approach, with Haar-based features
and polynomial SVM for classification. Felzenszwalb et. al. [4]
used detection by parts and the detection is positive only if the de-
tected parts form a predefined proper human model. Studies with
features like edge templates [5], haar features [6] and rectangular
differential features [7] etc. and classifiers like SVM [2, 3] and Ad-
aBoost [7], have also been reported.

Recent work on human detection using sparse representation is
presented in [8] where the classifier is learned from sparse repre-
sentation of dense HOG features, but lacks multi-scale feature and
also use a high dimensional feature vector. In [9], v-HOG is used
with feature dimension of 36 for 4097 blocks and the training is also
three step optimization with large training set. The underlying idea
of present work evolves from the idea of Wright et al., [10]. The
novelty of the proposed method lies in integrating HoG features in
forming the scale embedded dictionary. Although dictionary based
object detection in the context of sparse representation is presented
in [11], but here it is used for detection of two different objects oc-
curring simultaneously.

3. OVERVIEW

Initially, p1 number of clean positive images are selected from MIT
pedestrian dataset and p2 number of negative images are selected
randomly from INRIA dataset. These images are resized to a size of
64×32, for computational ease.

3.1. Sparse Representation

Given an over-complete dictionary D in Rm×p where m is the size
of feature vector and p is the number of atoms in the dictionary, the
input sample z in Rm×1 is represented as a sparse linear combina-
tion of dictionary atoms i.e., z = Dα. To obtain the sparsest repre-
sentation, we need to solve the following optimization problem,

min
α∈Rp

‖α‖0 subject to z = Dα (1)

where ‖ . ‖0 denotes the l0-norm, which counts the number of non-
zero entries in a vector. But, if the solution α is sparse enough, we
can use l1-norm instead of l0-norm for convexity. Also, to account
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for noise, we relax it as, z = Dα + n where n ∈ Rm is a noise
term with bounded energy ‖n‖2 ≤ λ. The sparse solution α can
be approximately recovered by solving the following l1-norm mini-
mization problem [1]

min
α∈Rp

‖α‖1 subject to ‖z −Dα‖22 ≤ λ (2)

where λ is a small positive value chosen.

3.2. Feature Extraction

We use HOG features[2] with non-overlapping blocks of size 16×16
to form the dictionary D. For each block in the detection window,
36-dimensional feature vectors are l1-normalized and concatenated
to form the overall feature vector of length 288.

3.3. Dictionary Formulation

The dictionary is a collection of normalized HOG features extracted
from positive class images at different scales, negative class images
at original scale and the trivial standard basis atoms, arranged in
order. This is called scale embedded dictionary. To obtain the dif-
ferent scales, every positive class image is padded across the borders
and then resized to 64×32 which form the first 150 atoms of the
dictionary (D). The 150 negative class atoms are extracted from
150 non-human images of size 64×32 and these form the next 150
atoms. Trivial standard basis atoms are included to handle occlusion
and clutter.

As an illustration, we consider an example dictionary as in Fig-
ure 1. Here, p1, p2 and p3 form the positive class atoms for a single
image at three different scales and n1, n2 and n3 form the negative
class atoms for three different negative images. The size of feature
dimension (m) has been taken as 6, number of positive class atoms
(p1) as 3, number of negative class atoms (p2) as 3. As the size
of feature dimension is 6, the number of trivial atoms should be 6.
Hence, the total number of atoms is p where p = p1+p2+m. Here
pi and ni where i = 1, 2, 3 form the dictionary atoms for positive
class and negative class respectively. The identity matrix appended
at the end of negative class atoms forms the trivial atoms.

Fig. 1. Example dictionary bases or atoms

3.4. Confidence Measure

For detection, the confidence measure as given in (3) has been used.
It is defined as the ratio of sum of coefficients of positive class atoms

(a) Input Image

Response of Basis Coefficients at Location (9,14)

Response of Basis Coefficients at Location (2,14)

(b) Likelihood Image

Fig. 2. Detection Result on a big image: The likelihood image gives
the confidence measure for the presence of human. The final detec-
tion results are obtained after fusing the detections based on detec-
tion score and neighbouring detections

to sum of coefficients of negative class and trivial atoms and com-
puted as

confidence value (τ) =

∑

i∈1:p1

αi

∑

i∈p1+1:p

αi

(3)

where p1 is the number of positive class atoms in the dictionary and
p is the total number of atoms. Intuitively, the confidence measure
is high for positive class test samples and tends to zero for negative
class test samples. This is because when the test sample is positive,
the coefficients corresponding to the positive class (numerator) will
be higher compared to the case when the testing sample belongs to
the negative class. The threshold for confidence measure τ has been
fixed experimentally. The value of the scale-factor is determined
using the position of the peak coefficients α, with respect to the
scale-embedded dictionary. Mathematically,

scale(z) = argmaxi αi where i ∈ 1 : p1 (4)

Algorithm

The proposed algorithm is summarized as below.

1. Consider a matrix of training feature atoms in the dictionary

D = [x1 x2 . . . xp1 y1 y2 . . . yp2 Im×m] ∈ Rm×p

and a test feature z ∈ Rm.

2. Normalize the columns of D to have unit l2 norm.
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3. Solve the l1 minimization problem

min
α∈Rp

‖α‖1 subject to ‖z −Dα‖22 ≤ λ

4. Calculate the confidence value using equation 3.

5. The human is detected, if the confidence value is greater than
the chosen threshold.

6. If detected, then the scale is determined by the location of
maximum magnitude coefficient element in alpha using equa-
tion 4

Figure 2 shows a test image and likelihood image obtained by run-
ning the detector across the entire image. Figure 2(b)(up) shows
the coefficients obtained by running the detector at certain position
where human is not present and Figure 2(b)(down) shows the coef-
ficients obtained by running the detector at another position where
human is present. It was clear that if human is not present then the
positive atoms do not respond at all but if present then both positive
and negative atoms respond. Hence the detection can be performed
using the confidence value.
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Fig. 3. Confidence measure for positive(924) and negative(4530)
class of test images.

4. RESULTS

4.1. Experimental Setup

During training, for dictionary, ten positive images are selectively
chosen from MIT pedestrian database[3] and resized to size 64×32
and then 15 images at different scales are generated for each pos-
itive image as described in section 3.3. 150 negative images for
the dictionary are randomly chosen from INRIA dataset[2] and they
are cropped to size 64×32. For testing, 924 positive images are
taken from the same MIT pedestrian dataset and resized to 64×32.
The negative images for testing are selected from INRIA person
dataset and cropped to size 64×32. The HOG features are extracted
with non-overlapping blocks.The SPArse Modeling Software [12]
has been used for solving the stated l1 minimization problem.

4.2. Discussion

The proposed algorithm is experimented with different number of
positive atoms in dictionary and fixed number of negative and trivial
atoms.

4.2.1. Experiment 1

In this experiment, the dictionary contains 150 positive(10×15), 150
negative and 288 trivial atoms. This experiment is performed with
two test sets. In case 1, 924 positive and 453 negative images are
considered. In case 2, 924 positive and 4530 negative images are
considered. The accuracies obtained are 99.79% and 99.94% re-
spectively. Figure 3 shows confidence values for all testing images
for the the above cases. The detection performance obtained using
SVM are 98.81% and 99.89% respectively, while for the l1-norm
Minimisation Learning [8] 96.10 % and 98.70% respectively.

4.2.2. Experiment 2

In this experiment, the dictionary contains 15 positive from single
image, 150 negative and 288 trivial atoms. For the same two test sets
as in Experiment 1, the accuracy obtained are 99.13% and 99.5416%
respectively. Accuracies using SVM are 46.76% and 89.81 % re-
spectively, while for the l1-norm Minimisation Learning [8] 86.27%
and 93.11% respectively. It is clear that even with features extracted
from one image at all scales gives quite a good results. This is be-
cause the confusion increases when large number of positive atoms
are included.

4.2.3. Experiment 3

In this experiment, the same dictionary as in experiment 1 is used,
but the test set is created by randomly resizing the 924 positive im-
ages and 453 negative image between 50% and 100% of their full
size. The accuracy obtained in our case is 99.57% . For the SVM
classifier, the accuracy is 98.47%, while for the l1-norm Minimisa-
tion Learning, the accuracy is 96.19%.
The proposed method is evaluated using Precision-Recall curves and
Detection Error Trade off (DET) curves which are shown below in
Figures 4, 6, 5 and 7. It is clear that the proposed method (sparse
representation by scale embedded dictionary) performs better than
SVM classifier and the l1-norm minimisation learning. The experi-
mental results are shown below.
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Fig. 4. Miss-rate vs FPPW: Blue legend (L1-Dict) is using scale em-
bedded dictionary, Red legend (SVM) using SVM classifier with the
same training and testing features, while the green one (LML) using
l1-norm Minimisation Learning. FPPW are plotted on log scale.

Figure 8 shows one result obtained by proposed algorithm. The
algorithm is able to find the scale exactly for all the detected persons.
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Fig. 5. Precision vs Recall: Blue legend (L1-Dict) is using scale
embedded dictionary, Red legend (SVM) using SVM classifier with
the same training and testing features, while the green one (LML)
using l1-norm Minimisation Learning.
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Fig. 6. Miss-rate vs FPPW (Multi-scale-Experiment 3): Blue legend
(L1-Dict) is using scale embedded dictionary, Red legend (SVM) us-
ing SVM classifier with the same training and testing features, while
the green one (LML) using l1-norm Minimisation Learning. FPPW
are plotted on log scale.
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Fig. 7. Precision vs Recall (Multi-scale-Experiment 3): Blue legend
(L1-Dict) is using scale embedded dictionary, Red legend (SVM) us-
ing SVM classifier with the same training and testing features, while
the green one (LML) using l1-norm Minimisation Learning.

Fig. 8. Detection result using proposed algorithm

5. CONCLUSION

We proposed an efficient method for human detection which ad-
dresses the multi-scale detection problem using the theory of sparse
representation which is computationally efficient due to multi-scale
embedding in one single dictionary. This approach can be used for
detection of other object classes likes cars, cycles and bikes etc.
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