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ABSTRACT

We propose a novel space-time descriptor for region-based

tracking which is very concise and efficient. The regions rep-

resented by covariance matrices within a temporal fragment,

are used to estimate this space-time descriptor which we call

the Eigenprofiles(EP). EP so obtained is used in estimating

the Covariance Matrix of features over spatio-temporal frag-
ments. The Second Order Statistics of spatio-temporal frag-

ments form our target model which can be adapted for varia-

tions across the video. The model being concise also allows

the use of multiple spatially overlapping fragments to repre-

sent the target. We demonstrate good tracking results on very

challenging datasets, shot under insufficient illumination con-

ditions.

Index Terms— Covariance Matrix, Eigenvectors, Track-

ing, Joint Diagonalization, Spatio-Temporal Fragment

1. INTRODUCTION

Research in tracking has aimed to build efficient appearance

models for objects that are robust to real-world challenges,

like illumination changes, variations in pose, scale, shape

etc. Efficient and concise space-time respresentation of ob-

jects being tracked is thus a challenging task. In tracking

literature, three main approaches have been proposed for tar-

get modeling. They are low-level (pixel-based), mid-level

(region-based) and high-level (parts, shape or pose based).

Low-level approaches include tracking interest points such

as SIFT [1] and high-level approaches involve building more

sophisticated models, like the individual body parts of a hu-

man, and tracking then simultaneously [2]. But in videos shot

under insufficient illumination, the individual parts are often

not visible and the frames are noisy and grainy, rendering

interest Points very unreliable. Rather, the target appears like

a blob or patch, which suggests a region-based (mid-level)

approach. Region-based tracking requires efficient region

descriptors,like Colour Histograms [3]. But a more powerful

and efficient method is the Covariance Descriptor [4], which

is used for Region tracking [5]. Covariance Descriptor of

a region in an image is the sample covariance matrix of the

feature vectors at locations within that particular region. This

descriptor has been shown to be robust to noise and scale.

In this paper, we propose a novel space-time descriptor

which we call the Eigenprofile. Estimation of EP is equivalent

to joint diagonalization of these covariance matrices and they

form a matrix of orthonormal vectors. We incrementally build

models for the target using EP, making use of the property that

the appearance is more or less constant over short sliding time

windows. We use the term spatial fragment(SF) to indicate

a region within an image, and temporal fragment(TF) as a

collection of frames within a time-window.The cube formed

by stacking the corresponding Spatial-Fragments, which are

the spatial regions containing object within a frame, within a

Time-Fragment as the Spatio-Temporal-Fragment (STF) . The

second-order statistics of these STFs form our target model.

The tracking proceeds by continuously adapting STF models

from target SFs over sliding TFs, and matching candidate SFs

in new frames to these models.

The original Covariance Tracker [4] also models the tar-

get by a statistic of target SFs over a TF. This statistic is

the Intrinsic Mean of the SF Covariance Matrices from these

frames. Wu et al propose [6] for learning another statistic for

STFs, which is equivalent to pooling the features from target

SFs in different frames together and estimating the Covari-

ance Matrix. In tracking literature, a recent paradigm is the

fragment-based approach [7], where multiple image patches

(SFs) are used to build a template for an object within a sin-

gle frame. Increasing the number of SFs improve the track-

ing performance, but also require larger model size. Our ap-

proach provides considerable efficiency in storage, and this

efficiency can be utilized to increase the number of SFs.

2. EIGENPROFILES

Consider a TF of K frames, where we have Covariance

Matrices Ct+1, Ct+2, . . . , Ct+K for corresponding SFs. In

Video-based applications, we observe empirically that the

p-dimensional feature vectors in corresponding SFs in the

individual frames within a TF have almost identical princi-
pal components, which are nothing but the eigenvectors of
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Fig. 1. schematic diagram of the tracking. We use SF models

from a TF of 5 successive frames to be build STF model, and

compare candidate SFs from the next frame with it.

the corresponding covariance matrices, ordered with respect

to the eigenvalues. Hence, we propose to approximate the

eigenbases of the {Ck} matrices with a common eigenbasis

which we call the Eigenprofile of that STF.

2.1. Estimation of the Eigenprofile

Each SF covariance matrix within a TF can be expressed

completely with its eigenvectors and eigenvalues as Ck =∑
j δkjekjekj

T . Under our hypothesis, it can be approxi-

mated by shared eigenvectors as

Ck ≈
p∑

j=1

δkjβjβj
T (1)

Here the β vectors form the EP for the STF obtained by

stacking these K SFs. Estimation of EP is nothing but Ap-
proximate Joint Diagonalization of the {Ck} matrices. There

is a family of Approximate Joint Diagonalization algorithms,

of which one is by Pham [8]. Given the Ck matrices, this

algorithm attempts to find a single matrix V to minimize the

following function

∑

k

(log(det(diag(V T CkV ))) − log(det(V T CkV ))) (2)

However these algorithms do not make use of similarity of

eigenvectors of the input matrices in any way. Here, we pro-

pose to use this additional information to make an improved

estimate. We formulate the optimization problem as

min
β

t+K∑

k=t+1

‖Ck −
p∑

j=1

δkjβjβ
�
j ‖2

F such that (3)

βT
j βj = 1∀j and βT

j βi = 0∀i �= j

(4)

Writing the Lagrangian dual and solving it with respect to

β, we have

βj
T Djβj = αj (5)

where Dj =
∑t+K

k=t+1 2ψkjCk, which is a symmetric ma-

trix. The program is not convex, but a local solution is ob-

tained when we have βj as an eigenvector of Dj , for ev-

ery j. Then we require the Dj matrices for estimating the

Eigenprofile. But, we would like to have an estimate of EP

from the eigenvectors of the {Ck} matrices directly so that

we do not need to store the entire matrices. To facilitate this,

we use the observation that the corresponding eigenvectors

of the {Ck} matrices are quite identical to each other, i.e.

e(t+1)j ≈ e(t+2)j ≈ · · · ≈ e(t+K)j

Hence, we solve the following optimization problem

min
∑t+K

k=t+1 ||uj − ekj ||2 subject to

uT
j uj = 1

The solution to this is an estimate of the i-th eigenvector

of Dj , and is given by

uj =
∑

k ekj√
(
∑

k ekj)T (
∑

k ekj)
(6)

It is to be noted that the estimates uj of βj thus obtained

do not satisfy the orthogonality criteria, as required by the

definition of Eigenprofile. So, we orthonormalize them by

Gram-Schmidt procedure, to obtain orthonormal {βj}.

3. ESTIMATION OF STF COVARIANCE MATRIX

For the tracking application, we build the Covariance Matrix

C of the STF as the target model. We posit that C will have

the Eigenprofile β as eigenvectors. Hence C is given by C =∑
j σjβjβj

T . So we are now left with the estimation of its

eigenvalues σj to learn it completely.

3.1. Maximum Likelihood Estimate: EP-ML

We estimate the STF Covariance Matrix C using Maximum-

Likelihood Estimate (EP-ML). Within a temporal fragment,

the feature vectors in corresponding spatial fragments of in-

dividual frames should follow the same distribution. It is

known that sample Covariance Matrices of sample popula-

tions drawn from the same distribution follow the Wishart

Distribution. Assuming these sample covariance matrices Ck

are I.I.D., the probability of this set is given by

p({Ck}|C) = T

∏
k |Ck|

−p
2 e(− 1

2 (trace(C−1 P
k Ck))

|C|K
2

(7)

By differentiating with respect to σj and equating to 0, the

M.L.E. of the eigenvalues σj from Equation 7 is given by

σj =
∑

k βj
T Ckβj

K
≈

∑
k δkj

K
(8)
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3.2. Low-Rank Approximation of STF Covariance Ma-
trix

For many features, including GaborFeatures which we have

used in our experiments,it is observed that the leading eigen-

values of Covariance Matrices of the SFs are considerably

larger compared to the rest, which rapidly trail off towards

zero. Equation 8 shows that the same has to hold for the

eigenvalues of the STF Covariance Matrix, and so it is pos-

sible to approximate the STF Covariance Matrix with only its

R leading eigenpairs, as Clow =
∑

1≤j≤R σjβjβj
T . Thus,

for p-dimensional features, STF model now consists of the

STF Mean Vector μ, R EP-vectors β of dimension p, and R
eigenvalues σ. Moreover we need not store the ST matrices

Ck from the frames, but only the R leading eigenvalues δk,

the corresponding eigenvectors ek and the mean vector μk of

the SF. The mean vector μ for STF can be easily obtained

from the SF mean vectors μk in the individual frames of the

TF, as μ =
∑

k nkμk∑
k nk

, nk being number of feature vectors

in the SF in k-th frame. Thus such an approximation of the

matrix results in some storage efficiency, especially when R
is considerably lower than p.

4. TRACKING

We now proceed to describe the framework of tracking we

used in the experiments. As the main aim of the paper is to

build a model and not a tracker, we restrict ourself to a simple

but effective tracking framework.

4.1. Spatio-Temporal Fragments

As mentioned earlier, in our tracking experiments we use mul-

tiple spatially overlapping fragments to model the target. We

build 9 STF models. If in a particular frame the object is

known to be located inside a tight rectangle centered at (x, y)
with length and breadth (dx, dy), the mean vector and SF Co-

variance Matrix of features from this rectangular SF are used

to build the Central Model, and 8 Peripheral Models are ob-

tained from the Mean Vectors and SF Covariance Matrices of

the rectangular SFs centered at (x+δxdx/2, y+δydy/2) with

dimensions (dx, dy), where δx, δy ∈ {1, 0,−1}.

4.2. Dissimilarity Between Region Models

During tracking, given any new frame, we need to compare

the SFs at the candidate locations against the target model(s),

and report the location where the matching is the best. This

requires a measure to compare the STF model(s) to the can-

didate SF model(s). In case of our EP-based method, a STF

model consists of STF Mean Vector and STF Covariance Ma-

trix. We use the KL-Divergence as the measure of dissimi-

larity. In case of Covariance Tracker [5] and ICTL [6], the

measure is the Geodesic Distance (GD) between Covariance

Matrices. We also implemented ICTL using KL-Divergence

as this measure. We call this as ICTL2 in our results. For

Pham’s Algorithm of Joint Diagonalization [8], the measure

in Equation 2 is used. In this case, the STFs are represented

by the V matrix of 2, output by Pham’s algorithm. Since we

have 9 STF models R1, R2, . . . , R9 as mentioned above, at

each candidate location (x, y) we get 9 candidate SF mod-

els C1, C2, . . . , C9. We compare the candidate models to

the corresponding STF models to get a final score f(x, y) =∑9
i=1 KL(Ri, Ci). In cases where GD or Equation 2 is used,

the function f is modified suitably.

The algorithm is described in details in the adjacent box.

Algorithm 1 Tracking Algorithm

Initialize the locations X1, X2, X3, X4, X5 of the target

and its size (δ1, δ2) in the first 5 frames.

Crop out 9 rectangular SFs around Xi and calculate their

mean and SF Matrices for 1 ≤ i ≤ 5.

Estimate the 9 STF models and save them.

for i = FirstFrame : LastFrame
choose N candidate locations

for i = 1 : N
Crop out 9 rectangular SFs corresponding to central and

peripheral models around candidate location Xi

Build the candidate SF models C1, C2, . . . , C9 from these.

Calculate f(Xi) with the respective STF models

R1, R2, . . . , R9

end for
Set the location to (X∗) where f(X∗) is minimum among

all candidate locations

Re-estimate the 9 STF models by replacing the oldest

frame in the TF with the current one

end for

5. EXPERIMENTAL EVALUATION

5.1. Datasets and Features

We have carried out experiments on 9 datasets. Of these 2 are

standard and 7 captured by us. We have used one sequence

(SEQ1) from PETS2000. SEQ2 is the publicly available Toni

dataset ( [9]) which involves tracking the face of a person in

an obscure room. The person also turns his head and there

is a sudden illumination change. SEQ3 and SEQ4 are indoor

videos of a person walking on a long corridor with a single

light. In SEQ3 the person walks into an obscure area with

sharp illumination gradient and in SEQ4 initially the light is

off, then it comes on and finally goes off again. The back-

ground also changes considerably. SEQ5-SEQ9 are all out-

door videos captured at night. In all the cases there is mini-

mal lighting, and it is difficult to distinguish the target from

the background clearly. In SEQ6, in the beginning the person
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Fig. 2. SEQ3: The results shown are for EP-ML,ICTL and

Covariance Tracker from top to bottom. COV losse track at

the illumination gradient in the middle

SEQ EP-ML IVT COV ICTL ICTL2 Pham

1 0 0 0.37 0.02 0 0.63

2 0.07 0.68 0.70 0.70 0.16 0.38

3 0 0.50 0.50 0 0 0.50

4 0 0.72 0.70 0 0 0.70

5 0 0.65 0 0 0 0.08

6 0 0.42 0.93 0.93 0.93 0.93

7 0 0 0.67 0.72 0 0
8 0 0.24 0.41 0.49 0.36 0.33

9 0 0.72 0.86 0.50 0.50 0.78

Table 1. Fraction of frames in the videos where the output’s

overlap with Ground Truth is 0 pixels.

moves before an unevenly lit background. Moreover, there is

a sudden illumination change of the target due to the lights

of a passing vehicle. The videos are of varying length with

as short as 39 frames (SEQ1) to as long as 600 (SEQ2). We

used 12-dimensional Gabor Features (3scales, 4orientations)

for the sequences. In the eigenprofile-based method, only the

leading 3 eigenvectors are used for low-rank approximation

of the STF Covariance Matrix.

5.2. Benchmark Methods and Results

Since the proposed approach is region-based, and uses Co-

variance Matrices to model regions, we compare with related

approaches like Covariance Tracker and ICTL. Again, as

EP is obtained by Joint Diagonalization, we compare with

an alternative JD algorithm ( [8]). All these experiments
were performed under the same basic framework of features
and Tracking Algorithm, with only the STF model differ-
ing across the methods. Moreover, we also show results

using IVT as in [10] which is not covariance-based, but

well-known. In the Ground Truth, the target’s locations are

specified by a tight rectangle around it. During tracking

also, the method marks the inferred region with a rectan-

gle. The number of frames in which the overlap of these

two rectangles is 0 is provided in Table 1. It can be seen

that our method EP-ML achieve the best performance in

all the 9 sequences. The code and data are available in

http : //clweb.csa.iisc.ernet.in/adway/tracking/.

Fig. 3. SEQ6: EP-ML,ICTL and Cov. Tracker from top to

bottom. The video is dark and blurred, EP-ML succeeds un-

like the rest

6. CONCLUSION

The experiments clearly show the superior performance of

the EP-based method over other approaches, under the same

framework. Moreover, the EP-estimation is also computa-

tionally far more efficient than the Covariance Tracker, which

involves an iterative algorithm at each frame to calculate the

Intrinsic Mean Matrix. Also, our method provides the addi-

tional advantage of storage-efficiency. This efficiency can be

utilized in increasing the number of spatial fragments without

increasing the memory footprint. The framework currently

does not have any motion-model, inclusion of which can turn

it into a highly accurate tracker.
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