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ABSTRACT

We present in this paper a new visual tracking framework based
on the MCMC-based particle algorithm. Firstly, in order to obtain
a more informative likelihood, we propose to combine the color-
based observation model with a detection confidence density ob-
tained from the Histograms of Oriented Gradients (HOG) descriptor.
The MCMC-based particle algorithm is then employed to estimate
the posterior distribution of the target state to solve the tracking prob-
lem. The global system has been tested on different real datasets.
Experimental results demonstrate the robustness of the proposed sys-
tem in several difficult scenarios.

Index Terms— Visual tracking, particle filtering, MCMC,
HOG.

1. INTRODUCTION

Visual tracking is one of the most fundamental tasks in many com-
puter vision applications, such as intelligent visual surveillance,
human-computer interaction, traffic monitoring or video indexing.
Among the numerous tracking methods proposed in the litera-
ture [1], particle filtering (PF), which was first introduced by Isard
and Blake [2], has obtained considerable success in various kinds of
visual tracking problems. Such a method recursively approximates
the posterior probability density function with a set of weighted ran-
dom sampled particles evolving in the state space. The obtained
estimates can be set arbitrarily close to the optimal solution (in the
Bayesian sense) at the expense of computational complexity.

Many particle filtering-based visual trackers have been proposed
in the literature. Most of them attempt to reinforce observation mod-
els, which must be robust to occlusions, pose changes, camera view-
points, and environment variations. The most common approach
consists in constructing an adaptive appearance-based model, such
as color histograms [3, 4], mixture of Gaussians [5, 6], or multiple
features fusion [7]. Some systems try to improve the dissimilarity
measure between observation models in order to improve the track-
ing performance [6, 8]. Other contributions include the use of affine
transformations in the state space model [9, 10, 11]. The authors
show that, by defining the state equations on the two-dimensional
affine group, the tracking robustness is enhanced considerably in dif-
ficult scenarios.

Some other approaches have also been proposed in the literature
to improve the traditional importance sampling step in the particle
filters [12, 13, 14]. Indeed, due to their sampling mechanism, par-
ticle filters tend to be inefficient when applied to high dimensional
problems such as target tracking. A notable contribution is the use of
Markov Chain Monte Carlo (MCMC) in a sequential setting. In [13],
Khan et al. replace the traditional importance sampling step in the
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particle filter with a MCMC sampling step to obtain a more efficient
MCMC-based multi-target filter. However, the computational de-
mand of the proposed algorithm can become excessive as the number
of particles increases owing to the direct Monte Carlo computation
of the prediction density at each time step. To avoid this numerical
integration, the authors in [14, 15] propose an alternative sequential
MCMC algorithm.

In this paper, we address the tracking problem in complex scenes
using a single uncalibrated camera. We present a visual tracking
framework based on the MCMC-based particle algorithm presented
by Septier et al. [15, 16] with some improvements. In order to rein-
force the likelihood measurement, we propose to combine a color-
based observation model with additional probabilistic information
obtained from the Histograms of Oriented Gradients (HOG) detec-
tor. This approach is different from [7] which fuses the information
of color histogram and HOG descriptor as a single human feature to
track. The MCMC-based particle algorithm is then employed to esti-
mate the posterior distribution of the target state to solve the tracking
problem.

The outline of the paper is as follows: in Section 2, we present
the proposed method for object tracking. Section 3 presents perfor-
mance results of the system on several real datasets. Finally, in Sec-
tion 4, conclusions and important short-term perspectives are given.

2. VISUAL TRACKING PROBLEM FORMULATION

In this paper, we focus on the problem of single object visual track-
ing. The aim is to estimate the conditional probability p (Xk|Z0:k)
of the target state Xk at time k given the sequence of observa-
tions Z0:k = (Z0, . . . , Zk). This posterior probability p (Xk|Z0:k),
known as the filtering distribution, can be expressed recursively us-
ing the Bayes filter equation:

p (Xk |Z0:k ) ∝
∫

p (Zk |Xk ) p (Xk |Xk−1 )

p (Xk−1 |Z0:k−1 ) dXk−1 (1)

where the dynamic model p (Xk |Xk−1 ) governs the temporal evo-
lution of the state Xk given the previous state Xk−1, and the obser-
vation likelihood model p (Zk |Xk ) measures the fitting accuracy of
the observation data Zk given the state Xk.

In the following subsections, we first define the dynamic and
observation models used in our system, and then describe in detail
the proposed MCMC-based tracking algorithm.

2.1. Dynamic and observation models

Given the state vector Xk = [ck, rk]
T

, where ck = [xk, yk] are the
coordinates of the object centroid and rk = [rxk , r

y
k ] are the width

1493978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



and height of the object, the state evolution is defined as:{
Σk ∼ IW (Σk |n,Σk−1 )
Xk ∼ N (Xk |Xk−1,Σk )

(2)

where the state vector Xk has a Gaussian distribution with mean
vector Xk−1 and covariance matrix Σk. The covariance matrix Σk,
which defines the region of uncertainty around the current state, fol-
lows an inverse Wishart distribution with n degrees of freedom and
scale matrix Σk−1. As in [17], the covariance matrix is modeled as
a dynamic random variable in order to adapt to motion changing.

To evaluate how likely a candidate region represents the target,
we define the likelihood model by combining two sources of infor-
mation: the color-based similarities estimated by using a region-
based color histogram coupled with the Earth Mover’s Distance
(EMD), and a detection confidence density obtained from the inter-
mediate output of the HOG-based detector. Each term is described
in detail below.

Color-based model. The region of interest is first horizontally
decomposed in p equidistant bands. Fixing the number of bands
rather than their size allows obtaining invariance whatever the scale
of the region. The histogram of each color component is then com-
puted in each band. The region-based color histogram is thus com-
posed of n = p× b× c values, where p is the total number of equal
parts of the region, b is the number of histogram bins, and c is the
number of color components. The advantages of such a model are
the consideration of the spatial information and the simple estima-
tion.

The similarity between the candidate and the reference models
is estimated by using Earth Mover’s Distance (EMD) [18], which
computes the matching cost between two histograms of each band
and each color component. The similarity is thus defined as:

LC = exp

(
−

p∑
i=1

c∑
j=1

EMD
(
hij , h

′
ij

)
/σ2

)
(3)

where hij and h′
ij denote the histograms of the color component

j and the corresponding band i of two models, σ is a predefined
parameter.

Detection confidence. The second term of the likelihood model
is based on the detection confidence density built up by using the
HOG detector [19]. This intermediate information, obtained before
applying non-maximum suppression, has already been integrated in
the likelihood model in [20] in combination with the final results of
the HOG detector. Here we only exploit the raw output obtained
in the Support Vector Machine (SVM) classification step to define
a confidence map. Given a pixel k and all the sliding-windows wi

to which the pixel k belongs, the detection confidence score of the
pixel k is given by:

pd (k) =
∑

∀wi�k

exp [α (e (wi)− emax)] (4)

where e (wi) is the distance obtained from the SVM output of win-
dow wi, emax is a parameter for normalizing the SVM classification
output, and α is a parameter modifying the discrimination level be-
tween the presence and non-presence of people in an image.

Once the detection confidence scores of all pixels of an image
have been calculated, they are normalized by their sum in order to
obtain a spatial distribution. Figure 1 presents an example of the
detection confidence map for a given frame.

Given a candidate state Xi
k, the detection confidence-based like-

lihood LH is defined as the sum of the detection confidence scores

Fig. 1. Detection confidence map (left to right: original image, con-
fidence map).

of all pixels belonging to the region r defined by Xi
k. The final likeli-

hood of the candidate state Xi
k is thus defined as the product of these

two terms:

p
(
Zk

∣∣∣Xi
k

)
∝ LC × LH (5)

2.2. Visual tracking via MCMC-based particle filter

2.2.1. Overview

As mentioned above, our tracking framework is based on the
MCMC-based particle algorithm proposed in [15, 16] which con-
siders the general joint posterior distribution of Sk and Sk−1 as the
target distribution:

p (Sk, Sk−1 |Z0:k ) ∝ p (Sk |Sk−1 ) p (Zk |Sk )

p (Sk−1 |Z0:k−1 ) (6)

The MCMC procedure is used to make inference from this joint
distribution. The posterior distribution p (Sk−1 |Z0:k−1 ) at time
k − 1 is first approximated by an empirical distribution based on
the current particle set p̂ (Sk−1 |Z0:k−1 ):

p (Sk−1 |Z0:k−1 ) ≈ 1

Np

Np∑
p=1

δ
(
Sk−1 − Sp

k−1

)
(7)

where Np is the number of particles used in the algorithm and p is
the particle index. Then, after many joint draws from Eq.(6) using
an appropriate MCMC scheme, the converged MCMC output for Sk

can be extracted to give an updated marginalized particle approx-
imation of p (Sk |Z0:k ). In this way, sequential inference can be
achieved.

2.2.2. MCMC-based particle filter

In our problem, the state of interest is Sk = {Xk,Σk}
and the target distribution is the joint posterior distribution
p (Xk,Xk−1,Σk,Σk−1 |Z0:k ). At each MCMC iteration, a joint
Metropolis-Hastings (MH) proposal step is first carried out for
jointly updating {Xk,Xk−1,Σk,Σk−1}. Then, Xk and Σk are up-
dated individually by using the refinement Metropolis-within-Gibbs
step. These two steps are repeated (Nb +Np) times, where Nb is
the burn-in period length and Np is the number of particles. The
detail of the m-th iteration of the proposed algorithm at time k is
described in the following:
(i) Joint MH proposal step. For the joint proposal step, we sim-
ulate a sample {X∗

k,X
∗
k−1,Σ

∗
k,Σ

∗
k−1} from the proposal function

q1 (Xk,Xk−1,Σk,Σk−1|Z0:k) given by:

q1 (Xk,Xk−1,Σk,Σk−1|Z0:k) = q11 (Xk |Xk−1,Σk )

q12 (Σk |Σk−1 ) q13 (Xk−1,Σk−1 |Z0:k−1 ) (8)
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where q11 (Xk |Xk−1,Σk ) and q12 (Σk |Σk−1 ) are the state evo-
lution defined by Eq. (2), q13 (Xk−1,Σk−1 |Z0:k−1 ) is the particle
approximation of the posterior distribution p (Xk−1,Σk−1 |Z0:k−1 )
obtained at the previous time step k − 1.

Thus, suppose that at time k − 1, there are Np sam-

ples
{
Xj

k−1,Σ
j
k−1

}Np

j=1
drawn from the previous filtering density

p (Xk−1,Σk−1 |Z0:k−1 ). We first randomly select a joint sample
{X∗

k−1,Σ
∗
k−1} from this set, then given {X∗

k−1,Σ
∗
k−1}, we sample

from the dynamic model defined by Eq. (2) to obtain {X∗
k,Σ

∗
k}.

The proposed candidate is accepted with probability ρ1 =

min

(
1,

p (Zk |X∗
k )

p
(
Zk

∣∣Xm−1
k

)
)

.

(ii) Refinement step. For the individual refinement steps, we
propose to sample the two main components of the state vector
Xk and the covariance matrix Σk successively. The coordinates
of the object centroid, ck, is refined with the proposal function
q2 (ck |cmk−1, r

m
k , rmk−1,Σ

m
k ) given by:

c∗k ∼ q2 (ck |cmk−1, r
m
k , rmk−1,Σ

m
k ) = N

(
ck

∣∣∣μ̃m
k , Σ̃m

k

)
(9)

with mean vector μ̃m
k = cmk−1 + Σm

k(12)

(
Σm

k(22)

)−1
(rmk − rmk−1)

and covariance matrix Σ̃m
k = Σm

k(11) − Σm
k(12)

(
Σm

k(22)

)−1
Σm

k(21)

given Σm
k =

[
Σm

k(11) Σm
k(12)

Σm
k(21) Σm

k(22)

]

The acceptation probability is ρ2 = min

(
1,

p(Zk|c∗k,rmk )
p(Zk|Xm

k )

)
.

The refinement procedure for the size of the target rk is carried
out similarly with the following proposal function:

r∗k ∼ q3 (rk |rmk−1, c
m
k , cmk−1,Σ

m
k ) = N

(
rk

∣∣∣μ̂m
k , Σ̂m

k

)
(10)

where μ̂m
k = rmk−1 + Σm

k(21)

(
Σm

k(11)

)−1
(cmk − cmk−1) and Σ̂m

k =

Σm
k(22) − Σm

k(21)

(
Σm

k(11)

)−1
Σm

k(12).

The acceptation probability is ρ3 = min

(
1,

p(Zk|cmk ,r∗k )
p(Zk|Xm

k )

)
.

The final refining step regarding the matrix covariance Σk is
based on the proposal function q4 (Σk |Σm

k ,Σm
k−1 ) defined as:

Σ∗
k ∼ q4 (Σk |Σm

k ,Σm
k−1 ) = IW (Σk |n,Σm

k−1 ) (11)

The acceptance probability is ρ4 =

min

(
1,

p (Xm
k |Xm

k−1,Σ
∗
k )

p
(
Xm

k

∣∣Xm
k−1,Σ

m
k

)
)

.

3. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our tracking algo-
rithm on challenging scenarios extracted from PETS’06 dataset [21]
and from our own dataset captured at a level crossing (named LC
dataset). For each experimentation, the initialization is manual and
the MCMC-based particle filters are run with Np = 1000 particles
and a burning period of 500 iterations. The color-based model is
formed by concatenating 4 bands with 8-bin histograms for each R,
G, B channel. We also compare our method to the well-known PF-
based tracker. For a fair comparison, both methods adopt the same
dynamical model and observation model as described in Section 2.1.

For the PETS’06 dataset, the tracking results shown in Figure
2 appear to be satisfactory with regard to the presence of occlusion.

The scenario extracted from the LC dataset is more challenging be-
cause of the presence of partial occlusion and the large variation in
the target motion. Figure 3 visually compares the results obtained
by the PF-based tracker and the proposed algorithm. Although both
trackers never lose the target, the tracking accuracy of our tracker is
consistently better than that of PF-based tracker.

Fig. 2. Tracking results obtained from the PETS’06 dataset (occlu-
sion occurred at frame 1070 between two people).

In order to perform a quantitative analysis of the proposed ap-
proach, we have manually segmented the targets in two sequences
illustrated in Figures 2 and 3. The centroid and the size of these
segmentations are used as the ground truth data. The performances
of the tracking system are evaluated by calculating the difference in
pixel between the ground truth data and the target state vector esti-
mated by the trackers.

Figure 4 shows the per-frame tracking errors for the sequence
shown in Figure 3 obtained by using four trackers: conventional PF
and MCMC-based particle using the color-based observation model
and the proposed observation model (i.e. the color descriptor cou-
pled with the HOG-based confidence map). Table 1 resumes the
error means in terms of centroid and size of the target of both se-
quences in Figures 2 and 3. One can notice that the MCMC method
improves considerably the tracking performance in comparison with
the PF-based approach. Moreover, the use of the proposed HOG-
based confidence map in the observation model leads to better results
thanks to the additional information provided in the likelihood.
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Fig. 4. Per-frame tracking errors for the sequence shown in Figure 3
obtained by different methods.

4. CONCLUSION

In this paper, we have presented a new visual tracking framework
based on the MCMC-based particle algorithm. We have also pro-
posed to combine the color-based observation model with the detec-
tion confidence density obtained from the HOG descriptor in order
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Fig. 3. Tracking results obtained from a sequence captured at a level crossing (first row: results obtained by the PF-based tracker, second row:
results of the proposed algorithm) (occlusion occurs at frame 40 and the person starts to run at frame 98).

Table 1. Mean of tracking errors for different methods.
LC PETS’06

Center Size Center Size
PF 7.81 14.75 4.34 5.7

PF-HOG 6.45 11.22 3.8 5.34
MCMC 6.79 11.98 3.47 5.49

MCMC-HOG 5.06 7.39 3.15 5.09

to increase the robustness of the tracker. The global system has been
tested on different real datasets. Experimental results show that our
system outperforms the conventional particle filter, even when it uses
the HOG-based confidence density.

Several perspectives are envisaged to improve the performance
of the system. Firstly, we aim to include an automatic update of
the target reference histogram during the tracking. We also aim to
extend our tracking framework to multiple object tracking in more
realistic scenarios.
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