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Abstract—In this work, a foveal wavelet-based Mean Shift
Tracking Algorithm is presented. The foveal wavelets introduced
by Mallat [16] are known by their high capability to precisely
characterize the holder regularity of singularities. Therefore, by
using the foveal wavelet transform, image features are accurately
identified and are well discriminated from noise. These wavelets
are used to extract the texture features of the target object.
The extracted features are then used to construct a joint color-
foveal textures histogram to represent the target object. Once
the joint histogram is obtained, it is applied to the mean shift
framework in order to track a target object in a video sequence.
The experimental results showed that the proposed approach
overcomes the traditional mean shift tracking technique as well
as other existing tracking algorithms.
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I. INTRODUCTION

The problem of tracking video objects is one of the major is-

sues in video surveillance systems. The challenges in tracking

include occlusion, illumination change, object perspective or

scale change, etc. Among the existing tracking algorithms, the

mean shift algorithm, that was firstly proposed by Fukunaga et

al. [7], has become popular due to its efficiency and simplicity.

Beside the mean shift algorithm there have been too many

tracking approaches, or even modified mean shift algorithms,

in the literature that addressed the problems of occlusion and

illumination or scale changes in object tracking. Let us first

take a look to the most commonly used tracking algorithms.

In [15], Lucas et al. proposed a KLT-based tracking method

that establishes correspondence by using a gradient-based

minimisation technique. In their approach, Lucas et al. con-

sidered that the tracked objects are image patches with two

high eigenvalues of the structure tensor as depicted in [18].

These eigenvalues are the same as regions centered around

Harris interest points [9]. These Harris regions possess the

property that they are different from all regions in their

neighbourhood, a necessary condition for establishing reliable

point-to-point correspondence. However, these points do not

have any property that would facilitate the minimisation step.

Other existing tracking approaches, for instance the ap-

proach of Castle et al. and the one proposed by Klein et al. [2]

[14], are based on fast detectors and establish correspondence

by matching of detected points, which is feasible if only a

small number of alternatives must be verified, i.e. when the

error in prediction and hence the search area is small with

respect to the density of points.
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To design more robust object tracking algorithms, some au-

thors combined MS (mean shift) with local point feature-based

tracking or Bayesian framework like PFs (particle filters).

In [12], Zhou et al. proposed an expectation-maximization

algorithm that integrates SIFT features along with color-based

object appearance in MS. In [1], Chen et al. used feature points

to handle occlusion and scaling under the MS framework.

In [20], Khan et al. used the MS framework along with

consensus point feature correspondences in order to improve

tracking accuracy via a coarse-to-fine process. In [5], Shan

et al. proposed an approach in which the MS is embedded

in particle filters to track human hands. In [19], Zhong et

al. proposed to weight particles by using an observation

model. Thereafter, they applied the MS on particles with large

weights, called elite particles. In [13], Khan et al. combines

PFs and anisotropic MS seeking multiple appearance modes

by partitioning a rectangular bounding box into sub-regions.

However, the above appearance based tracking methods

share a common drawback which is their inefficiency to

perform tracking in noisy video sequences and when the target

is having similar appearance to the background. For this latter,

many authors proposed to combine the color histogram with

edge features [4] [8] [17].

Nevertheless, to our knowledge, none of these methods

addressed the problem of object tracking in noisy sequences

because intensity-based edge and feature detectors cannot

distinguish between various transition types. For that, our

attention is directed toward the use of multiscale approaches,

namely the wavelets. The choice of which wavelet to use

should be based on the precise contour localisation capability

of that wavelet.

The foveal wavelets were first introduced in [16]. They

mimic the non uniform distribution of photoreceptors on the

retina. The visual resolution is highest at the center (fovea)

of the retina, but falls off away from the fovea. This effect

is modeled by foveal approximation spaces introduced in

[16]. Projections in a foveal approximation space approximate

functions with a resolution that decreases proportionally to the

distance from the point of interest. Foveal wavelet coefficients

give a pointwise characterization of edges.

Having well represented the edges, a joint color-texture

histogram is constructed. This joint histogram substitutes the

traditional color-histogram that is used to represent the target

in the traditional MS approach. The proposed foveal wavelet-

based target representation allows a better representation of

the target structural information even in noisy sequences.

Consequently, a better target tracking is achieved.

The paper is organised as follows. In section 2, a review of

the foveal wavelet is given. Section 3 aims to represent the
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traditional MS approach. In section 4, our tracking approach

is represented. In section 5 experimental results are shown.

Finally, section 6 concludes the paper.

II. FOVEAL WAVELETS

A. Review of the foveal wavelets

Edges are considered as one-dimensional singularities that

move in the plane of the image. Foveal wavelets are orthogonal

wavelets that are centered at the same location as if to absorb

the singular behavior of the frame image [16]. These wavelets

zoom on a single position u. If Vu is the space generated by

the foveal wavelet located at u, then the orthogonal projection

of a function f in Vu is given by:

PVu
f (t) =

J∑
j=−∞

2∑
k=1

〈
f, ψk

j,u

〉
ψk

j,u (t) (1)

Where Ψ is the mother foveal wavelet. These wavelets are

characterized by their ability to eliminate singularities located

at u. If f is differentiable in a left and right neighborhood of

u, but not in u then it has been shown in [16] that fPVu
f is

continuous at u and has a bounded derivative over a whole

neighborhood of u. Therefore, the singularity of f at u is

absorbed by the wavelet coefficients at u. Singularities of f
are entirely characterized by the foveal wavelet coefficient at

u. Singularities can be detected by computing

ε (u) =
J∑

j=−∞
2−2j

2∑
k=1

∣∣〈f, ψk
j,u

〉∣∣2 (2)

If f has a Lipschitz regularity α < 1 at u, and hence is not

differentiable at u then ε (u) → +∞, but if f has Lipschitz

regularity α > 1 at u then ε (u) < +∞. Singularities are thus

detected from the amplitude of ε (u).
We can, therefore, distinguish between noise singularities

(negative Lipschitz component) and edge singularities from

the amplitude of ε (u).

B. Edge detection using foveal wavelets

The singularities of a frame I are detected with one dimen-

sional foveal wavelets, along each line and each column of

the frame image. Detected singularities are chained together

to form edge curves in two dimension. Let {f (x1, u2)}x1∈R

be a horizontal scan line, where u2 is fixed and x1 varies.

{f (x1, u2)}x1∈R
is decomposed over one-dimensional foveal

wavelets. For each u we compute

εu2 (u) =
∑

j

2−2j
2∑

k=1

∣∣〈f (x1, u2) , ψk
j,u (x1)

〉∣∣2 (3)

Any singularity corresponds to a point u1 where εu2 (u) is

locally maximum when u varies. This singularity is located

in the frame image plane at the position (u1, u2). The same

procedure is repeated along the columns of the image to detect

singularities. Horizontal and vertical detected singularities are

chained together to form edge curves. Figure 1 shows a family

of curves detected along each row and column of a noisy

image. This representation is used to construct the joint color-

edge histogram in the MS framework.

(a) (b)

Fig. 1. (a) noisy image, (b) edge curves detected along each row and column

III. MEAN SHIFT ALGORITHM

The mean-shift algorithm is a non-parametric density gra-

dient estimator. It is basically an iterative expectation max-

imization clustering algorithm executed within local search

regions. Comaniciu has adapted the mean-shift for the tracking

of manually initialized targets [4]. The mean-shift tracker pro-

vides accurate localization and it is computationally feasible. A

widely used form of target representation is color histograms,

because of its independence from scaling and rotation and its

robustness to partial occlusions. Define the target model as its

normalized color histogram q = {qr}1,...,m

qr = C

n∑
i=1

k
(
‖x∗i ‖2

)
δ [b (x∗i ) − r] (4)

where m is the number of bins. The normalized color distri-

bution of a target candidate p (y) = {pr (y)}1....rh
centered in

y can be calculated as

pr (y) = Ch

nh∑
i=1

k

(∥∥∥∥y − xi

h

∥∥∥∥
2
)
δ [b (xi) − r] (5)

where {xi}i=1....nh
are the nh pixel locations of the target

candidate in the target area, b(xi) associates the pixel xi to

the histogram bin, k(x) is the kernel profile with bandwidth

h, and Ch is a normalization function defined as

Ch =
1

nh∑
i=1

k
(∥∥y−xi

h

∥∥2
) (6)

In order to calculate the likelihood of a candidate, we need a

similarity function which defines a distance between the model

and the candidate. A metric can be based on the Bhattacharyya

coefficient, defined between two normalized histograms p(y)
and q as

ρ [p(y), q] =
m∑

r=1

√
pr (y) qr (7)

Hence the distance is defined by

d [p (y) , q] =
√

1 − ρ [p (y) , q] (8)

To track the target using the Mean Shift algorithm, we

iterate the following steps:

1) Choose a search window size and the initial location of

the search window.

2) Compute the mean location y0 in the search window.
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3) Center the search window at the mean location computed

in Step 2 and compute the Bhattachayya coefficient

Pr(y0) using (7) :

ρ [p (y) , q] ≈ 1
2

m∑
r=1

√
pr (y0) qr

+
1
2
Ch

nh∑
i=1

wik

(∥∥∥∥y − xi

h

∥∥∥∥
2
) (9)

where

wi =
m∑

r=1

√
qr

pr (y0)
δ [b (xi − r)] (10)

4) Repeat Steps 2 and 3 until convergence (or until the

mean location moves less than a preset threshold). The

estimated target moves from y to a new position y1
defined by:

y1 =

nh∑
i=1

xiwi

nh∑
i=1

wi

(11)

IV. FOVEAL WAVELET-BASED MEAN SHIFT ALGORITHM

We made use of the RGB channels and the information

provided by the foveal wavelet-based edge representation to

jointly represent the target. First we construct the edge map

of the target region in a frame I by using the foveal wavelet

-based procedure presented in section II. Then, for each edge

pixel in the target region, we compute the Lipschitz component

α using the procedure explained in [16]. Thereafter, we com-

pute the orientation at each edge point by using the following

equation:

θ (x, y) = tan−1

(
I (x, y + 1) − I (x, y − 1)
I (x+ 1, y) − I (x− 1, y)

)
(12)

To obtain the color and texture distribution of the target

region, we use (5) to compute the distribution for the target

model q, in which r = 8 × 8 × 8 × 3 × 3. The first

three dimensions represent the quantized bins of the RGB

channels, the forth dimension represent the quantized bins of

the orientation, while the last dimension is for the quantized

bins of the Lipschitz component. We have used 8 orientations

included in
[−π

2 ,
π
2

]
and 8 Lipschitz components included in

[−1.5, 1.5].
Our tracking algorithm is summarized as follows:

It is to be noted that the use of the foveal wavelets based

edge detection permits to perform tracking in noisy sequences.

Furthermore, the use of the Lipschitz component permits to

distinguish between strong and weak edges and consequently,

to achieve better tracking when the background and the target

object have similar appearance.

V. EXPERIMENTAL RESULTS

We perform experiments to validate our tracking algorithm

and compare it with existing ones. To achieve this, we compare

our approach with the ones proposed by Comaniciu et al. [3]

and Ning et al. [17]. In our experiments, we have pre-selected

image region to be tracked in the following video sequences.

INPUT: a threshold ε, the target model q and its central

location y0 in the previous frame.

Step 1: In the current frame compute the foveal wavelet

transform of the target region.

Step 2: Detect the edges in the target region using (3).

Step 3: For each edge pixel compute the Lipschitz compo-

nent as explained in [16].

Step 4: For each edge pixel compute the orientation using

(12).

Step 5: Compute the distribution of the target candidate

Pr(y0) using (5).

Step 6: Compute the weights wi using (10).

Step 7: Compute the new central location using (11).

Step 8: Let D = ‖y1 − y0‖,

if D < ε
Goto step 9

else
Goto step 1

Step 9: Load the next frame with an initial location y0 = y1.

Step 10: Goto step 1

The first sequence tropical is taken from the database [10],

shows a soldier walking in a forest. The region of interest (the

soldier) has similar colour to that of the background and many

objects occlude temporarily the tracked region. The second

sequence, man [11], shows a person walking along a car park.

Apart from object’s colour similarity to the nearby cars and

the shadowed areas, the video contains numerous instabilities,

resulting from a shaking camera, fast zoom-ins and zoom-

outs, and a wide range of a view angles. The last sequence,

otcbvs is a part of a multimedia benchmark dataset collection

[6] to which we have added a White Gaussian Noise with

a variation of 0.02. In this sequence, the small-sized region

of interest undergoes significant intensity changes as it enters

the shadowed areas of the walkway and the entrance of a

building. In order to objectively evaluate the performance of

the developed tracking technique, we made use of the Root

Mean Square Error (RMSE) performance measure:

RMSE(z) =
√

(xz − x̃z)
2 + (yz − ỹz)

2
(13)

where (x̃z, ỹz) is the upper left corner coordinates of the

tracking box and (xz, yz) is the corresponding ground truth

generated manually. The mean of RMSE is presented in Table

I.

As we can see from the performance measures shown in

Table I, our foveal wavelet based approach outperforms the

other two approaches in term of accuracy. It also appears to

be more stable than the other two methods in the presence of

noise. This is due to the fact that foveal wavelets were capable

to characterize the object features in spite of the presence of

noise.

It can be also observed from the ’difficult’ frames shown

in Figure 2 that our algorithm performs better than the other

two techniques. In fact these frames offer more insight into

the performance and robustness of the tested techniques. In

the tropical sequence, the MS algorithm [3] failed to track the
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Fig. 2. Video frames with tracker output (our method in Magenta, the method of Comaniciu et al. [3] in blue and the method of Ning et al. [17] in green)

Seq. Name our method Ning et al. [17] Comaniciu et al. [3]
Tropical 4,21 17,12 32,12

man 6,22 10,02 19,22
otcbvs 8,2 37,74 45,32

TABLE I
MEAN RMSE (PIXELS)

soldier in the frames where the object and the background

have approximatively the same appearance. Our algorithm

achieved a better accuracy in tracking the soldier than the one

proposed in [17]. In man sequence, the three tested algorithms

manage to track the selected target. However, our method

identifies the scale and the position of the object with the

best accuracy. Unlike the other two methods, the one proposed

in this paper tracks the object throughout the noisy otcbvs
sequence demonstrating the robustness to noise.

VI. CONCLUSION

In this paper, a foveal wavelet based mean-shift tracking

algorithm is proposed. The proposed method makes use of

foveal wavelet to accurately characterize objects features and

perform more accurate tracking. Experimental results showed

that the proposed method achieves better accuracy and ro-

bustness to noise while tracking object than the original

MS algorithm and other existing methods. The developped

approach will be included in a videosurveillance monitoring

system allowing to have a quality-oriented tecking of objects.
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