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ABSTRACT

Motion saliency detection has an important impact on further
video processing tasks, such as video segmentation, object
recognition and adaptive compression. Different to image
saliency, in videos, moving regions (objects) catch human be-
ings’ attention much easier than static ones. Based on this
observation, we propose a novel method of motion saliency
detection, which makes use of the low-rank and sparse de-
composition on video slices along X-T and Y-T planes to
achieve the goal, i.e. separating foreground moving objects
from backgrounds. In addition, we adopt the spatial infor-
mation to preserve the completeness of the detected motion
objects. In virtue of adaptive threshold selection and efficient
noise elimination, the proposed approach is suitable for dif-
ferent video scenes, and robust to low resolution and noisy
cases. The experiments demonstrate the performance of our
method compared with the state-of-the-art.

Index Terms— Motion Saliency Detection, Low-rank
and Sparse Decomposition, Video Analysis

1. INTRODUCTION

Visual attention analysis provides an intuitive methodology
to semantic content understanding and important information
capture in both images and videos. Most primates, including
humans, can divert their mind subconsciously to the salient
objects in images or to the motion objects in videos. Such a
remarkable ability leads to that they can sample the most “in-
teresting” features and interpret complex scenes while spend-
ing limited processing. In other words, visual saliency makes
a distinguishing region stand out and thus catch special atten-
tion quickly, which provides an alternative solution to many
tasks, such as video segmentation [1], adaptive content deliv-
ery [2] and adaptive compression [3].
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Fig. 1. Example of result comparison between the proposed
method and the state-of-the-art. (a) Original frame, (b)-(d)
are the results obtained by Temporal Spectrum Residual [4],
GMM [5] and our method, respectively.

In last decade, saliency detection has attracted much at-
tention. For static images, the widely used model for cap-
turing salient regions is introduced by Itti et al. [6], which
breaks down such a complex problem of saliency detection
into several blocks. The core of their designed model is fea-
ture selection (e.g. color, texture, local or global contrast).
Following this model, a number of techniques have beem de-
veloped in the literature. For instance, Ma and Zhang [2] pro-
pose an approach to attention area detection in images based
on local contrast analysis and fuzzy growing. Achanta et al.
adopt low-level features of luminance and color to generate
saliency maps [7]. Graph-Based Visual Saliency [8] com-
putes activation maps on certain feature channels and then
normalizes and combines them to form the final saliency map.
Hou and Zhang [9] propose a Fourier spectrum residual anal-
ysis method to compute the regions that attract humans’ atten-
tion in images. In [10], the authors adopt a two-stage method
to accomplish the task, which is actually an extension of [9].
More recently, Cheng et al. [11] take into account several fea-
tures simultaneously including regional contrast, global con-
trast and spatial coherence.

To detect motion saliency in videos, however, most of the
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(a)  Input Video (f)  Saliency Map (g)  Output Video

(b)  X-T Plane Slice (d)  X-T Saliency

(e)  Y-T Saliency(c)  Y-T Plane Slice

Fig. 2. Illustration of the main stages of the proposed method

techniques for images (mentioned above) are not available.
Since, different with image saliency detection, moving re-
gions (objects) alternatively catch more human beings’ atten-
tion than static ones, even though which have large contrast
to their neighbors in static images. That is to say, the focal
point changes from the regions with large contrast to their
neighbors for images to those with motion discrimination for
videos. Therefore, the contrast based methods are hardly ap-
plied to videos directly. An exception exists in [4], which ex-
tends the spectrum residual analysis [9] in images to videos.
Actually, the goal of moving object separation from back-
ground is the same as that of motion saliency detection. A
few solutions for separating foreground moving objects from
backgrounds have been proposed, such as Gaussian Mixture
Model [5]. In this work, we introduce a novel method to de-
tect motion saliency by using low-rank and sparse decompo-
sition. Prior to detailing the stages of our proposed method,
we first post an example of the performance comparison be-
tween our method and the state-of-the-art in Fig. 1. As can be
seen, the result obtained by our method is significantly better
than the others. (More experiments and results can be found
in Sec. 4.)

2. LOW-RANK AND SPARSE DECOMPOSITION

Suppose we have a data matrix A ∈ R
n∗m, and know that it

can be decomposed as A = D + E, where D has low rank
and E is sparse. Both D and E are of arbitrary magnitude.

Recall that the Classical Principle Component Analysis
(CPCA) seeks the rank-k estimate of D to approximate A, or
to say, reduce the dimensionality of the observations in A by
optimally solving:

min ||A − D||, s.t. rank(D) ≤ k, (1)

where || ∗ || stands for the 2-norm, i.e. the largest singular
value of it. Note that CPCA is under the assumption that the
observations in A are polluted by noise slightly, i.e. the ab-
solute values of the elements in E are small. Otherwise, the

solution of CPCA is far away from the optimal D. However,
in real world problems, data pollution is ubiquitous and arbi-
trary. As a consequence, CPCA may somewhat lose its power
to deal with many real world problems.

To overcome the drawback of CPCA, Robust Principal
Component Analysis (RPCA) is proposed by Candès et al.
[12]. The goal of RPCA is to optimize the problem:

min rank(D) + ||E||0, s.t. A = D + E, (2)

where || ∗ ||0 denotes the �0-norm. But such a problem is in-
tractable in polynomial-time. Instead, one can solve its con-
vex relaxation as follows:

min ||D||∗ + λ||E||1, s.t. A = D + E, (3)

where λ is the coefficient controlling the weight of the sparse
matrix E, and ||∗||∗ and ||∗||1 represent the nuclear norm and
the �1-norm of the matrix, respectively. This formulation per-
forms well in practice, which recovers the true low-rank so-
lution even when up to a third of the observations are grossly
corrupted. More detail about the proof of the low-rank and
sparse decomposition using RPCA can be found in [12].

3. OUR METHOD

In this section, we first formulate the problem this work in-
tends to solve, and then detail the stages of our proposed
method (Fig. 2).

Problem Formulation. Different to static image saliency
detection, the motion regions in a video intensively attract
humans’ attention instead of the regions with large contrast
in every single image. And due to the correlation between
frames, the motion regions in the video1 can be identified
from the background by low-rank and sparse decomposition.
Note that foreground motion objects, such as cars and pedes-
trians, usually occupy only a fraction of the image pixels and
hence can be treated as sparse errors. In this work, we stack

1Assume the background of the video is stationary or with small flutter.
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(a)  Y-T Plane Slice (c)  Our Method(b)  TSR

Fig. 3. Visual comparison of the middle results for motion
saliency detection on a temporal slice. (a) shows a Y-T plane
slice. (b) and (c) are the results of detecting motion saliency
on (a) using TSR [4] and our method, respectively.

the temporal slices along X-T and Y-T as the matrices S. Nat-
urally, the low-rank component B corresponds to the back-
ground and the sparse component M captures the motion ob-
jects in the foreground. Figure 3 (a) shows a temporal slice to
confirm our observation. As shown in Fig. 3 (b) and (c), our
method significantly outperforms TSR in terms of capturing
the motion. Moreover, we take adaptive threshold selection
and refinement to reduce the effect of noise and missing pix-
els (because of the ignore of spatial consideration).

Decomposition. Based on the problem formulation, each
X-T and Y-T slice S is decomposed, similar with Eq. 3, as:

min ||B||∗ + λ||M||1, s.t. S = B + M. (4)

Then, the motion matrices, i.e. abs(M), obtained from the X-
T (Y-T) slices are integrated together as ScubeXT (ScubeY T )
along X-Y-T. Then, using norm(ScubeXT .∗ScubeY T ) to form
the initial saliency map Scube, where .∗ is the element-wise
product operator, and norm(∗) represents normalization pro-
cessing. The size of T in our experiments equals the size of
the video, it also can be defined as the size of a sub-video.

Refinement. To reduce the effect of missing pixels on the
motion objects and refine the results, we further take into ac-
count the spatial information. Intuitively, the pixels belong-
ing to the same motion object are always locally coherent.
This indicates that a pixel pi,j,k is very likely to be missing
salient pixel when its neighbors in frame k are motion salient.
Inspired by this observation, we use a Gaussian function to
recall the missing pixels as follows (we omit subscript k for
short):

Scube(i, j) =
∑

||px,y−pi,j ||2<τ

Scube(x, y) ∗ f(||px,y − pi,j ||2),

(5)
where τ is the radius of the support region centered on pi,j ,
|| ∗ ||2 is the �2-norm, and f is a Gaussian function: f(d) =

1√
2πσ

exp− d2

2σ2 .
Adaptive Threshold Selection. The procedure of op-

timizing Eq. 4 may bring some noise, which means some
salient pixels with small absolute values should belong to the
background. To handle this problem, we employ an adap-
tive threshold selection step to eliminate the noise. Similar to

[4], we assume the distribution of the values of salient pixels
in Scube satisfies the Gaussian distribution (μ, σ). Therefore,
we adaptively adopt Tglobal = μ + σ as the global threshold
to eliminate the noise in Scube:

Scube(x, y, t) =

{
1, ifScube(x, y, t) ≥ Tglobal,

0, otherwise.
(6)

Actually, the relative small regions are rejected in our im-
plementation based on the observation that the small motion
regions are likely to be false positive, and even human eyes
hardly capture the tiny motion objects. Therefore we employ
a threshold of the region size Tsize = (h ∗ w)/1500 to reject
the regions too small, where h and w are the height and the
width of video frame, respectively.

4. EXPERIMENTS

To reveal the performance of our method, we compare our
proposed method with the state-of-the-art, including Frame
Difference (FD), Gaussian Mixture Model (GMM) [5] and
Temporal Spectrum Residual (TSR) [4]. Five types of videos
are carried on: (1) single motion object, (2) multiple mo-
tion objects, (3) low quality, (4) cluttered background and (5)
moving camera with repeating background2.

The implementation involves three input parameters in-
cluding λ in decomposition, and τ and σ in refinement. In our
experiments, we use λ = 0.3, τ = 5 and σ = 1 uniformly.

Figure 4 gives the experimental results. As can be seen,
the simple method like frame difference is not able to obtain
reasonable results and sensitive to noise as shown in Fig. 4
(b). With respect to GMM, for the first video sequence, al-
though the major motion object (human) is discovered, there
exists ghost, i.e. because of GMM modeling the background
through first several frames, the performance of GMM during
the background modeling is unreliable. Once it is well mod-
eled, GMM performs well as shown in the second row of Fig.
4 (c). The third video is of low quality, the result of which
is significantly ruined by noise. In the fourth case, the recall
of GMM is superior to the others, but the precision is infe-
rior to our method. Due to the natural of GMM, it fails in the
context of moving camera, as shown in the last row of Fig. 4
(c). From the results of TSR shown in Fig. 4 (d), we find that
TSR does not perform well on these videos: uncertain motion
regions for the second case; noise sensitivity for the third;
lower recall and precision, in experiment 4, compared with
GMM and our method; missing the major parts of the motion
objects for the rest two. All above result from the inaccuracy
and sensitivity of the spectrum technique. Our method per-
forms remarkably well on all the five types of videos. Note
that the reasons why our method works on the moving cam-
era video mainly are: 1) the repeating background and 2) the

2To see more results, please visit:
http://cs.tju.edu.cn/orgs/vision/msd/results.htm
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(e) Raw Saliency Map(b) FD (c) GMM (d) TSR (f) Our Method (a) Original Frame 
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Fig. 4. Experiment results. (a) original frames (OF) from different video scenes and types. (b)-(d) are the results by using
frame difference (FD), GMM [5] and TSR [4], respectively. (e) shows the raw saliency maps obtained by our method. The final
results by our method are shown in (f). The performance difference analysis please see the text.

effort of our adaptive threshold selection and refinement. Fig-
ure 4 (e) shows the raw saliency maps without executing the
refinement and the adaptive threshold selection. The final re-
sults of our method are displayed in Fig. 4 (f).

5. CONCLUSION

In this work, we proposed a novel motion saliency detec-
tion method based on low-rank and sparse decomposition,
which provides many video processing tasks, such as video
segmentation and adaptive content delivery, with a powerful
video pre-processing technique. The proposed method is able
to distinguish foreground motion objects from backgrounds
without any background modeling procedure. Thank to spa-
tial consideration, we further reduce the effect of incomplete-
ness. In addition, by employing adaptive threshold selection
and noise elimination, the method can automatically and ro-
bustly accomplish the task. The experiments carried on differ-
ent video qualities and scenes demonstrated that our proposed
method outperforms the state-of-the-art.
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