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ABSTRACT

We study the problem of adaptive compressive sensing (CS) of a
time-varying signal with slowly changing sparsity and rapidly vary-
ing support. We are specifically interested in visual surveillance
applications such as background subtraction and tracking. Classi-
cal CS theory assumes prior knowledge of signal sparsity in order
to determine the number of sensor measurements needed to ensure
adequate signal reconstruction. However, when dealing with time-
varying signals such as video, prior information regarding the exact
sparsity may be difficult to obtain. Assuming a sensor that is able to
take an adaptive number of compressive measurements, we present
an algorithm based on cross validation that quantitatively evaluates
the current measurement rate and adjusts it as needed.

Index Terms— Compressive Sensing, Opportunistic Sensing,
Background Subtraction

1. INTRODUCTION

Visual surveillance is burdened with a large amount of data that is
used very selectively. For example, a surveillance system placed in
a remote area with the goal of detecting intruders will often observe
an inactive scene, yet record or transmit the same amount of data
during these periods as if the scene were active. This is wasteful, yet
it is not immediately clear how to approach the problem since the
periods of activity and inactivity are unknown in advance. If such
information were available a priori, a good approach would be to
collect data only during times of activity. Such a strategy falls into
the category of opportunistic sensing (OS) [1]: a methodology that
aims to dynamically adjust sensing system parameters to the state of
the environment.

In addressing the problem above, it is apparent that the system
must make a dynamic decision regarding scene activity. However,
such a decision can be made only if real-time data to that same ef-
fect is available. This means that either the video sensor itself must
remain active at all times, or some secondary modality (e.g., a mo-
tion detector) must collect the actionable information. Using an ad-
ditional modality comes at the cost of adding more hardware to the
system, and the data may be unreliable due to factors such as lim-
ited range compared to a visual sensor. Therefore, we consider the
case where a single video sensor continuously collects data in order
to perform both standard visual surveillance tasks and the determi-
nation of the state of the environment. Compressive sensing lends
itself to such a problem since each of the collected measurements
are influenced by the entire signal. Therefore, even a small number
of measurements can provide the system with information regarding
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the overall state of the signal. Thus, we will assume our video sensor
to be a CS camera, e.g. the single-pixel camera [2].

We specifically address the problem of background subtraction,
and accomplish this task using compressive measurements as has
been previously studied [3]. However, the existing approach is un-
able to adapt the system data rate to scene activity. Figure 1 shows
the drawbacks of such a scheme: too few measurements result in a
poor signal estimate, yet too many is wasteful since the estimate is
not better for them. In this paper, we propose a method that adap-
tively chooses the number of compressive measurements collected
based on cross validation (CV) theory in CS [4, 5]. Our contribu-
tion (a) extends the use of CV techniques to the estimation of time-
varying signals, and (b) provides a practical algorithm for adaptively
changing the data rate of the system in response to scene activity.

1.1. Related Work

Recent literature has investigated allowing the number of compres-
sive measurements to change during CS measurement and decoding.
Malioutov et. al [6] propose a method for estimating the CS recon-
struction error directly from the measurements. Using this estimate,
one can decide if additional measurements are warranted for an im-
proved estimate of the signal of interest. For time-varying signals
with slowly changing support, Vaswani [7] addresses the problem of
adapting measurement rate to the signal structure. Using an estimate
of the signal support provided by standard CS techniques, a reduced
number of measurements can be used to estimate the signal using a
Kalman filter on that subset of coefficients. Neither of these methods
accomplishes what our proposed algorithm aims to do: adaptively
select the measurement rate for a time-varying signal with rapidly
varying support, e.g., a foreground signal with target motion.

2. BACKGROUND

2.1. Compressive Sensing

For x ∈ R
N , CS collects M << N linear measurements via a

measurement matrix Φ ∈ C
M×N (y = Φx). If it is known that

x belongs to the class of sparse signals and Φ is constructed ap-
propriately, it is possible to deduce the value of x from y [8]. One
condition which must be satisfied in order for this to occur is that
the value of M must be large enough with respect to the number of
significant coefficients in x. In this paper, we adaptively choose M
for a time-varying x in order to reduce the overall amount of data
collected.
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Fig. 1. Single frame in the Convoy2 dataset. (a) and (b) are the background and foreground plus background, respectively. (c) is the true foreground, with
sparsity s = 4095. (d) and (f) are the foreground estimates as a result of using too few and too many compressive measurements, respectively (k = 200 and
k = 9810). (e) is the foreground estimate using an appropriate number of compressive measurements (k = 4095). Note that overestimating s leads to wasted
measurements, as they provide no discernible improvement in reconstruction quality.

2.1.1. Compressive Sensing with Cross Validation

Let x be reconstructed via x̂ = Δ(y,Φ) for some CS decoder Δ. In
this work, Δ will represent �1-minimization, i.e., if y = Φx, then
Δ provides a point estimate of x as

x̂ = Δ(y,Φ) = argmin
z

‖z‖1 subject to Φz = y .

Ward [4] estimates the reconstruction error ‖x−x̂‖ using a tech-
nique that is operationally similar to CV. A second CS measurement
matrix Ψ ∈ C

r×N , referred to as a cross validation matrix, is used
in parallel with Φ to sense x. These CV measurements are given
by yΨ = Ψx. For a given accuracy parameter ε, selecting Ψ with
r = O(ε−2) suffices to ensure with high probability that

(1− ε)‖yΨ −Ψx̂‖ ≤ ‖x− x̂‖ ≤ (1 + ε)‖yΨ −Ψx̂‖ ,

i.e., ‖yΨ −Ψx̂‖ is used to bound the CS reconstruction error.

Boufounos et. al [5] present an earlier version of this idea as a
method for increasing the speed of iterative CS decoding procedures.
At each iteration, the reconstruction error is approximated as ‖yΨ −
Ψx̂‖, which is used as a stopping criterion for the decoder.

Our method also utilizes a CV procedure. At each time instant,
we collect a fixed number of measurements and assume no further
access to the signal. After standard CS decoding, we estimate the
reconstruction error and use it to determine if more or fewer mea-
surements are necessary for sensing subsequent frames.

2.2. Compressive Background Subtraction

The problem of using compressive measurements of images to per-
form background subtraction has been considered by Cevher et. al.
[3]. A vectorized image xt is assumed to consist of both foreground,
ft, and background, bt, i.e.,

xt = ft + bt . (1)

A background-adaptive method for estimating f from compressive
measurements of x is proposed: f̂t = Δ(Φ(xt−bt),Φ), where bt

is known via an estimation and update procedure.

Our method differs in that we assume a static background (i.e.,
bt = b for all t), but allow for a varying number of compressive
measurements to be collected at each t. The background constancy
assumption is clearly restrictive, but we use it to demonstrate the
viability of a variable measurement rate method while leaving the
development of a background-adaptive method for future work. To

realize a varying measurement rate, we require a different measure-
ment matrix at each time instant, i.e. Φt ∈ C

Mt×N . To form Φt,
we first construct Φ ∈ C

N×N via standard CS measurement ma-
trix construction techniques, such as selection from the set of partial
Fourier matrices or by drawing entries from a Gaussian or Bernoulli
distribution. We then define Φt by taking the first Mt rows of Φ and
column-normalizing the result.

Our background model assumes that yb = Φb is a multivariate
Gaussian random variable, i.e.

yb ∼ N (μb,Σ) . (2)

Assuming we obtain L independent observations of yb, {yb
j }Lj=1,

we find the maximum likelihood (ML) estimate of μb as μ̂b =
1
L

∑L
j=1 y

b
j .

During subsequent observation, we wish to estimate the com-
pressive measurements of the foreground: yf

t = Φtft. Using (1)
and (2) we see yf

t ∼ N (yt − μb
t ,Σ), where μb

t ∈ C
Mt is formed

by retaining only the first Mt components of μb and rescaling to ac-
count for the different column-normalization factors in Φ and Φt.
Thus, we can obtain the ML estimate of yf

t as

ŷf
t = yt − μ̂b

t . (3)

From this point forward, we shall use yf
t in discussion with the un-

derstanding that ŷf
t is used in computation.

3. ADAPTIVE RATE COMPRESSIVE SENSING FOR
BACKGROUND SUBTRACTION

We consider the following scenario: a single CS camera observes an
area of interest, and we are ultimately concerned only with objects
constituting the foreground of the scene. We further assume that this
camera is such that the number of compressive measurements it col-
lects at any given time may be dynamically controlled (i.e., “on the
fly”). The problem considered in this paper is that of how to adap-
tively choose this number of measurements so as to limit the data rate
of the sensor while simultaneously maintaining enough information
such that we are able to faithfully reconstruct the time-varying fore-
ground images.

Let {xt}∞t=0 denote the vectorized intensity values of gray scale
images in the video sequence of interest, where the index t is a dis-
crete time index. We assume each xt adheres to the signal model (1)
with a static background. Using the procedure outlined in Section
2.2, we obtain an estimate of yf

t from the compressive measurements
yt = Φtxt. In a similar fashion, we also estimate cross validation
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measurements of the foreground, Ψft, via a r × N CV matrix Ψ
and a corresponding background estimate μ̂b

Ψ. The value of r is con-
stant with respect to time and is negligible compared to N (in our
experiments, less than two percent).

Typically the foreground signal ft is sparse in the spatial do-
main. Denote the number of significant coefficients it contains (i.e.,
its sparsity) by st. We assume that the video sampling rate is much
faster than any changes in target appearance, and thus that the quan-
tity st is slowly-varying with respect to t. However, due to target
motion, the support of these coefficients may vary rapidly.

The purpose of our adaptive rate algorithm is to adjust the num-
ber of measurements the system collects with respect to time. Thus,
we wish to select Mt such that yf

t ∈ C
Mt is of sufficient dimen-

sion to ensure that f̂t = Δ(yf
t ,Φt) is a reliable estimate of the

foreground. The method we present for doing so involves a loose es-
timate of st. We denote this estimate by kt, and it will be known to
the system before sensing at time t begins. Using kt, our algorithm
selects an appropriate Mt based on standard CS results. For exam-
ple, if Φ is selected such that entries are drawn from a Gaussian dis-
tribution, it has been shown that choosing Mt = O(kt log(N/kt))
suffices for adequate reconstruction of signals with kt significant co-
efficients.

3.1. Measurement Rate Selection

The quality of f̂t depends on the relationship between st and Mt.
However, since we do not know st prior to sensing, it is impossible
to use it when selecting Mt. Cevher et. al. [3] mitigate this prob-
lem by assuming an upper bound s such that s ≥ st for all t, which
is used to set Mt = M for all t. Under these conditions, Δ will
always yield reliable estimates, and a constant compression ratio of
M/N is achieved. However, this approach is wasteful since s may
be much greater than st for many values of t (e.g., consider the dif-
ference between frames with many targets and frames with few or
no targets). As shown in Figure 1, collecting extra measurements
due to an over-estimate of st does not significantly reduce the recon-
struction error. Therefore, for those values of t, Mt can be selected
to be smaller than M , and we can achieve a better compression ratio
without impacting the quality of the foreground estimate.

Our adaptive rate approach accomplishes this by assuming st =
kt before sensing, and using the observations collected to adjust kt
for the next time instant. We are only concerned with whether kt is
greater than or less than st. This can be posed as a hypothesis test:

H0 : kt ≥ st

H1 : kt < st .

Since we want kt to be close to st, if H0 (H1) is determined to be
true at time t, then we select kt+1 such that kt+1 < (>) kt.

We propose to make this determination based on the quality of
the best possible estimate Δ could hope to provide given Mt mea-
surements. We quantify this using the �2 residual of the best kt-term
approximation to ft. We will denote this quantity by σkt(ft), i.e.

σkt(ft) = min
|z|≤kt

‖ft − z‖2 (4)

which is minimized by a z that matches ft in the kt components with
the largest magnitude and is zero elsewhere.

We will assume that the insignificant coefficients of ft are dis-
tributed as independent, univariate Gaussian random variables with
zero mean and identical variances σ2

b . Under H0, the N − kt terms

Algorithm 1 ARCS for Background Subtraction

Require: Φ,Ψ, kt, μ̂
b, μ̂b

Ψ, l0 ≤ 1, l1 ≥ 1
Form Φt and μ̂b

t according to kt
Obtain sensor measurements: yt = Φtxt, Ψxt

Compute ML estimates: ŷf
t = yt − μ̂b

t , Ψft = Ψxt − μ̂b
Ψ

Estimate foreground: f̂t = Δ(ŷf
t,Φ)

Evaluate decision rule (7)
if H0 then

Set kt+1 = lokt
else

Set kt+1 = l1kt
end if

neglected by the z that minimizes (4) are all insignificant coefficients
and thus

E[σkt(ft)] =
√

(N − kt)σ2
b (5)

where E denotes expectation. Under H1, the minimizing z neglects
significant coefficients of ft, and thus we expect E[σkt(ft)] to be
larger. Motivated by the above, we suggest the following heuristic
decision rule:

σkt(ft)
H0

≶
H1

c
√

(N − kt)σ2
b , (6)

for some constant c.
In order to evaluate (6), we need to know the value of σkt(ft).

It is clear that we cannot directly compute it, since we do not know
the true value of ft. However, we can obtain an upper bound for it
by using Ward’s CV technique [4]. Under assumptions satisfied by
our system, the following inequality will hold with high probabil-
ity: σkt(ft) ≤ ‖ft − f̂t‖2 ≤ (1 + ε)‖Ψ(ft − f̂t)‖2, where Ψ is

known and defined as in Section 2.1.1. Ψf̂t is obtained by synthet-
ically applying Ψ to the foreground estimate, and Ψft is available
per previous discussion. Using the previous bound in (6), we form
the following decision rule:

‖Ψ(ft − f̂t)‖2
H0

≶
H1

c0

√
(N − kt)σ2

b (7)

for some constant c0.
The fact that ‖Ψ(ft−f̂t)‖2 is merely an upper bound for σkt(ft)

might lead to deciding H1 for some t for which H0 is actually true,
i.e., a false alarm. While false alarms may lead to more measure-
ments, they will not negatively impact the quality of the estimate
(e.g., see Figure 1). Further, in practice, it has been observed that
‖Ψ(ft − f̂t)‖2 remains sufficiently close to σkt(ft) such that the
number of extra measurements required by these false alarms is min-
imal.

3.2. Adaptive Rate Compressive Sensing

When assembled, the concepts above yield a strategy which we term
adaptive rate compressive sensing (ARCS). ARCS provides a means
by which to adaptively adjust the measurement rate of a CS system
measuring a time-varying signal with dynamic sparsity. We summa-
rize the procedure for background subtraction in Algorithm 1.

4. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of ARCS, we tested the algorithm
on the Convoy2 dataset. This dataset, collected on Spesutie Island,
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Fig. 2. Comparison between ARCS and a non-adaptive method. (a) Fore-
ground sparsity estimates for each frame, including ground truth values. Note
that the non-adaptive estimate upper bounds the ground truth for all frames.
(b) �2 foreground reconstruction error. (c) Number of measurements re-
quired. Note the measurements savings provided by ARCS for most frames,
and its ability to track the dynamic foreground sparsity.

consists of a video recorded by a single stationary camera. Vehi-
cles enter and exit the field of view over time, which gives rise to
a dynamic foreground sparsity (an excerpt can be seen in Figure 1).
Since the video was recorded with a conventional imaging system,
we simulated CS camera measurements via pre-multiplication with
Φ and Ψ in software. For our experiments, Φ was a randomly row-
permuted discrete Fourier transform matrix, and entries of Ψ were
drawn from a Bernoulli distribution over the discrete set {0, 1}.

In Figure 2, we compare ARCS to a non-adaptive technique in
which the signal sparsity is upper bounded for all t. After back-
ground estimation, both ARCS and a non-adaptive technique were
used to observe a video sequence consisting of 260 frames. We ini-
tialized k1 = 400, and selected l0 = 0.8, l1 = 1.1. Values of
c0 = 1.2, and σ2

b = 1.5445× 10−4 yielded sufficient results.

Figure 3 depicts a qualitative comparison of ARCS and a non-
adaptive method, this time using the PETS 2000 dataset [9]. We
show the foreground reconstructions obtained from each technique.
Each method was initialized to use an insufficient number of mea-
surements for an accurate foreground reconstruction. While a static
method is unable to compensate, the ARCS method is able to suc-
cessfully recover from this poor initialization by increasing its mea-
surement rate.

From the experiments, we see that ARCS is able to successfully
track the value of st and adjust the system measurement rate accord-
ingly. For upward swings in st, such as when a new target enters
the frame, the reconstruction error becomes significantly higher than
a non-adaptive scheme until the ARCS estimate is able to compen-
sate. It should also be noted that when st approaches its maximum
value, ARCS actually collects more measurements than the best non-
adaptive scheme. This is due to the overhead required for the CV
measurements obtained using Ψ. However, in a real scenario, it
may be impossible to determine an appropriate upper bound for st
in advance. Therefore, this bound may be much looser than the one
selected for the experiments presented here.

Fig. 3. Comparison of ARCS and non-adaptive method for two frames in
the PETS 2000 video sequence. (a), (b), and (c) show the ground truth, non-
adaptive, and ARCS frames (respectively) at t1. (d), (e), and (f) show the
frames from each at t2, where ARCS was able to adapt its measurement rate
in order to obtain a better estimate.

5. CONCLUSION

We have presented ARCS, an on-line algorithm that adaptively
controls the number of compressive measurements collected while
sensing a time-varying signal with dynamic sparsity. We have exper-
imentally validated this algorithm for the application of background
subtraction in video surveillance, where ARCS provides signifi-
cant data savings over non-adaptive approaches. ARCS is also able
to adapt to poor initial information regarding the signal sparsity,
whereas a non-adaptive scheme is unable to do so.

The practical effectiveness of ARCS in the scenarios described
above justifies several topics of future investigation. Among these
are the replacement of (7) with a rule more optimal in a decision-
theoretic sense and the exploration of other rate-adjustment tech-
niques once this decision is made. Further work could also inves-
tigate background-adaptive modifications. We are also interested
employing other sources of side-information other than what is pro-
vided by Ψ, such as that provided by object tracking.
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