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ABSTRACT

Video (image-to-image) registration is a fundamental problem
in computer vision. Registering video frames to the same co-
ordinate system is necessary before meaningful inference can
be made from a dynamic scene in the presence of camera mo-
tion. Standard registration techniques detect specific structures
(e.g. points and lines), find potential correspondences, and use
a random sampling method to choose inlier correspondences.
Unlike these standards, we propose a parameter-free, robust
registration method that avoids explicit structure matching by
matching entire images or image patches. We frame the regis-
tration problem in a sparse representation setting, where outlier
pixels are assumed to be sparse in an image. Here, robust video
registration (RVR) becomes equivalent to solving a sequence of
{1 minimization problems, each of which can be solved using
the Inexact Augmented Lagrangian Method (IALM). Our RVR
method is made efficient (sublinear complexity in the number of
pixels) by exploiting a hybrid coarse-to-fine and random sam-
pling strategy along with the temporal smoothness of camera
motion. We showcase RVR in the domain of sports videos,
specifically American football. Our experiments on real-world
data show that RVR outperforms standard methods and is use-
ful in several applications (e.g. automatic panoramic stitching
and non-static background subtraction).

Index Terms— registration, homography, /1 minimization

1. INTRODUCTION

Video registration refers to the problem of spatially aligning
video frames in the same absolute coordinate system deter-
mined by a reference image. The spatial transformation be-
tween the t" video frame I; and the reference image I, governs
the relative camera motion between these two images. Effec-
tively estimating the mapping between coordinate systems is
imperative for any computer vision application that makes use
of object positions in a dynamic scene including object tracking
and action recognition. These applications assume that pixel
motion in video frames is only due to moving objects and not to
apparent motion resulting from changes in camera parameters
(e.g. pan, tilt, and/or zoom). This is why video registration
in the presence of camera motion is a common problem in
many computer vision related domains (e.g. augmented re-
ality [1] and sports video analysis [2, 3]) and a fundamental
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pre-processing step that is necessary before meaningful higher
level inference can be performed on dynamic scene content.

Fig. 1. Example of panoramic stitching using our robust regis-
tration method applied to an American football video

Let us consider the case of analyzing broadcast field sports
video (specifically American football), which is the driving ap-
plication considered in this paper. In sports video, the camera
captures segments of the field at a time where important events
(e.g. touchdown) occur. Since the entire field is never captured
in the same frame, the camera undergoes pan-tilt-zoom (PTZ)
transformations following events unfolding on the field. To re-
liably interpret these events, higher level inference (e.g. player
tracking) is required. However, motion-based player tracking is
rendered useless, if camera motion is not compensated for. For
example, a player who is motionless on the field appears to be
moving when the camera pans.

The most common spatial transformation between consec-
utive frames is the projective transform, known as homography.
For a static scene, a non-translating camera undergoing PTZ
transformations captures a sequence of video frames, where
each consecutive pair of frames is related by a homography
irrespective of scene geometry [4]. It is well known that only
4 point correspondences (or 4 line correspondences [S5]) are
needed to estimate the homography. The standard registration
approach consists of detecting a set of distinctive feature points
(e.g. SIFT), finding proper matches (e.g. between SIFT de-
scriptors of SIFT features [6]), and estimating H, ;_; using
the Direct Linear Transformation (DLT) method [4]. How-
ever, since some feature points and/or some matches may be
outliers to the underlying homography, the popular random
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sampling method (RANSAC) is employed [6]. For example,
in broadcast American football, outliers are pixels belonging
to moving players, audience, or referees. In what follows,
we refer to this standard technique as the Feature-Matching-
RANSAC (FMR) method. Once homographies are computed,
many registration-based applications can be handled including
automatic panoramic stitching [6] (Figure 1), spatiotemporal
trajectory alignment [7], and sports video analysis [2].

Despite the prevalence of the FMR method, its performance
is dependent on the accuracy of feature detection and matching.
In American football, the detected features concentrate on the
painted digits and the logo in the middle of the field. In some
cases (e.g. camera zoom), these distinctive features disappear
altogether leading to degradation in performance. To improve
stability, higher order features are detected and matched such
as lines [5] or ellipses [8]. These structures are not easily de-
tected in images (due to view change and occlusion) and are
not generalizable to generic video. Moreover, potential feature
matches are established independently and are usually based on
a heuristic matching criterion, such as, comparing the transla-
tion of matched features to a threshold. Also, RANSAC perfor-
mance is contingent on what its parameters are. For instance,
one RANSAC parameter that highly impacts performance is the
inlier probability, which assumes that the percentage of inliers
is known apriori. This is a strong assumption in general, so this
parameter is usually user-defined or application-dependent.

In this paper, we propose a robust video registration (RVR)
framework that makes use of recent theoretical advances in
sparse representation and compressive sampling. Unlike FMR
methods, our RVR framework avoids the instability of detect-
ing and matching points, lines, or other primitives structures
by matching entire images or image patches. No explicit corre-
spondence between features is required. The matching process
computes an optimal homography that maps one image into the
other by assuming that outlier pixels are sufficiently sparse in
each image. No other prior information is assumed here. The
underlying optimization problem is modeled as an /; minimiza-
tion problem that can be solved iteratively and efficiently using
the Inexact Augmented Lagrangian Method (IALM). If point
correspondences are available and reliable, they can be seam-
lessly incorporated into the RVR framework as additional linear
constraints. RVR is parameter-free except for tolerance values
(stopping criteria) that determine when convergence occurs.
We take explicit measures to reduce the computational cost of
solving the ¢; problem. Spatially, we employ a coarse-to-fine
strategy based on random subspace projection. Temporally, we
exploit the smooth temporal variation of camera motion.

The paper is organized as follows. In Section 2, we give
a mathematical formulation of the video registration problem
embedded in a sparse representation framework. Section 3
describes our proposed method and how each homography is
solved for. In Section 4, we validate our RVR framework by
analyzing real-world American football videos and using it
in popular registration applications (e.g. automatic panorama
generation and non-static background subtraction), while also
comparing it to standard FMR methods when necessary.

2. PROBLEM FORMULATION

Given F' video frames (e.g. American football play), we aim
to estimate a sequence of homographies that map consecutive
video frames. Denote I; € RM*¥ a5 the image at time ¢ and
i, as its vectorized version. We also denote the homography
from ft to ft+1 as ﬁt. Let iﬂ = ;t o ﬁt be the result of
spatially transforming image i using h;. We denote the error
arising from outliers pixels (e.g. pixels belonging to moving
players) as €; = it“ — ﬂH. This error vector is assumed to
be sufficiently sparse, which is valid for many dynamic scenes
containing background. Here, we assume that the homogra-
phies are general (i.e. 8 general DOF). This can be changed
to accommodate prior models on the nature of each homogra-
phy (e.g. rotation and slight zoom). Note that this framework
is also available for image patches, whereby multiple patches
in one image jointly undergo the same homography. This will
only add more linear equality constraints.

The RVR problem becomes equivalent to estimating the op-
timal sequence of homographies that map consecutive frames
and render the sparsest error. This allows for reliable repre-
sentation and robustness to outliers. In this paper, we do not
explicitly model the temporal relationship between homogra-
phies. This decouples the problem into F' — 1 optimization
problems. More elaborate temporal modeling may be added as
constraints or regularization terms; however, such modeling is
beyond the scope of this paper.

We give a mathematical description of our RVR framework
next. Note that what follows is the basic formulation of the
framework. It can be extended to more general cases, as we will
mention later. For every 1 < ¢ < F' — 1, we ideally seek the
sparsest solution (minimum ¢, norm), but since this problem is
NP-hard in general and is non-convex due to the nonlinear con-
straints, we replace the cost function with its convex envelope
(¢1 norm) in (1). This relaxed problem has been recently used
in face recognition [9] and texture analysis [10].

min |[€¢41])1 6]
€¢q1,hy

subject to: iy ohy =141 + €141

Although the objective function is convex, the equality con-
straint is not. Similar to recent image alignment works [9],
we linearize the constraint around a current estimate of the ho-
mography and solve the linearized convex problem iteratively.
Therefore, at the (k + 1)™ iteration, we start with an estimate
of each homography denoted as ﬁi’“’. Here, the current esti-
mate will be B"*" = h*) + AL,. With this relaxation, (1)
is relaxed to (2), where 5&)1 = ft+1 — ;t o ﬁgk) represents the
error incurred at iteration £ and J ,Ek) € RMNXS8 the Jacobian
of iy o b with respect to hy. Applying the chain rule, J §k) can
be written in terms of the spatial derivatives of ft The problem
in (2) is a linear program and thus can be solved in polynomial
time. Although this linearized version has not been shown to
converge to a local minimum of (1), our empirical results (as
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well as results in [9]) suggest that convergence is guaranteed
especially when the solution is initialized in a neighborhood of
a local minimum. We observed that only a small number of
iterations (about 10) is required for convergence.

lnifl ll€t11llx 2
€41

subject to: Jgk) A Ht — €141 = gt(i)l

3. PROPOSED RVR FRAMEWORK

In this section, we describe how the £ iteration of (2) is solved
and how the sequence of homographies is computed. The
optimization problem in (2) is convex yet non-smooth due to
the /1 objective. In this paper, we solve (2) using the Inexact
Augmented Lagrangian Method (IALM), which is an itera-
tive method whose update rules are simple and closed form
and whose convergence rate is linear [9, 10]. In IALM, con-
straints are added as penalty terms in the objective function
with first order and second order Lagrangian multipliers. The
augmented Lagrangian function for (2) is £ = |[|€41]]1 +

NI Ay =618, —8a) + 413 AR, - 81 — G 3.
This unconstrained objective is minimized using alternating op-
timization steps, which lead to simple closed form update rules.
Updating Ah, requires solving a least squares problem. Con-
versely, updating €;,; makes use of the well-known ¢; soft-
thresholding identity Sy (&) = argmin(\||%||; + (|X — &]|3),
where Sy (a;) = max(0, |a;| — \). For more details on IALM,
refer to [9]. The overall RVR algorithm is summarized in Al-
gorithm 1, where the inner while loop designates the TALM. In
all our experiments, the stopping criterion compares successive
changes in the solution to a threshold ejap v = 0.1.

Algorithm 1: Robust Video Registration (RVR)

Input : I; Vt, HEO) Vt,k=0,p>1
1 while not converged do
2 Compute (i(k) and J,Ek) vt
m =0, AR™ =0, X(m) =0, u(™ >0
while not converged do
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Fig. 2. Coarse-to-Fine processing

Efficient Implementation and Extensions: Although IALM
is more efficient than first-order descent methods, it remains
computationally expensive — linear in the number of pixels.
So, we employ spatial and temporal strategies to improve ef-
ficiency. Temporally, camera motion varies smoothly, so we
initialize H;;; with H,;. Spatially, we use a coarse-to-fine
strategy, where the solution at a coarser level is the initializa-
tion for a finer one (refer to Figure 2). Also, to reduce the
number of pixels processed per level, we randomly sample pix-
els to consider in the update equations above. This builds on
theoretical guarantees in the compressive sensing community
[11], whereby randomly projecting the original problem unto
a subspace with lower dimensionality (d) will almost always
yield the same solution if it is sufficiently sparse. If oy de-
notes the ratio of nonzero elements in &; and dyn the minimum
subspace dimensionality, then dyy is the smallest nonnegative

scalar that satisfies log dyn + 20{‘1”;\'}; ~ = log M'N. By setting
_ €1l

ap = “n . we can adaptively select the random sampling
rate. In many cases, oy is small and only 15 — 20% of pixels
are sampled. These spatial and temporal strategies reduce run-
time by as much as 200%. For example, when M = 480 and
N = 640, computing a homography takes 3 seconds. Using
parallelized batch processing, the per-frame runtime reduces to
below 1 second, which is on-par with optimized FMR methods.
Moreover, (2) is extendable to the case where auxiliary prior
knowledge on outlier pixels is known. This prior is represented
mathematically as a matrix W that pre-multiplies €, yielding
a weighted version of (2). In the simplest case, W = diag(w)
where w; is the probability that pixel ¢ is an inlier. For ex-
ample, if a human detector is available, w; is inversely pro-
portional to the detection score. If W is invertible, the same
TALM can solve this problem using a simple change of variable
€11 = Wéi1.

4. EXPERIMENTAL RESULTS

Here, we validate the performance of our RVR method by ap-
plying it to real-world sports data from the American football
domain. For this purpose, we compiled a dataset of 90 plays
from online sources. Each play consists of 400 — 650 frames
each of 480 x 640 pixels. We intend to make this dataset pub-
licly available in the future. First, we compare the performance
of our RVR method to the standard FMR method (SIFT, DLT,
and RANSACQ). For fair comparison, we manually set the in-
lier probability of RANSAC to an appropriate value for every

1475



play. Other parameters (e.g. thresholds for SIFT detection and
matching) were set to their default values. We compute the av-
erage residual error ratio between the two methods. The error
mask for each image is constructed by thresholding €;. In Fig-
ure 3, we show the average error ratio and an example of the er-
ror produced by each method. Clearly, RVR outperforms FMR
on average by at least 10%. The RVR error concentrates on
the players only, while FMR leads to noticeable misregistration
error, especially at field lines.
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Fig. 3. Quantitative comparison between FMR and RVR

Next, we apply our RVR method to 3 applications that
showcase how the homographies can be used for further analy-
sis. Non-static background subtraction is the first application.
Here, camera motion is compensated for to separate foreground
from background. We detect foreground pixels by adaptively
thresholding €; in each frame followed by morphological op-
erations. Figure 4 shows an example of this detection. Clearly,
foreground pixels are reliably detected with few false positives,
which is very useful for multi-object tracking.

Fig. 4. Non-static background subtraction using RVR

Also, we automatically generate a panoramic stitch of the
field as in Figure 1. We use multiband blending [6] and bilat-
eral filtering to create the panoramic. In the third application,
we decompose the estimated homography into its constituent
camera motion parameters (i.e. zoom, pan, and tilt). If a PTZ
camera is non-translational and f; is its focal length at time ¢,
then it is easy to show that \/det(H,1) = % (defines the
zoom factor). In Figure 5, we plot this zoom factor over time
for a single play. As expected, the plot is piecewise linear in
broadcast video. We detect all piecewise linear intervals and

map each interval into one of three zoom regions: “No Zoom”,
“Zoom In”, and “Zoom Out”. This mapping is done by simply
setting cutoff values for each zoom region. This information is
quite informative, since zoom in broadcast sports is indicative
of the importance of a particular event within each play.
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Fig. 5. Zoom factor (in blue) during an example play

5. CONCLUSION

In this paper, we propose a robust and efficient video regis-
tration framework that builds upon recent advancements in
sparse representation and compressive sensing. Homographies
are computed between image pairs by solving a sequence of
relaxed /1 minimization problems using a hybrid coarse-to-fine
and random sampling strategy. Experimental results on sports
videos show that our method significantly outperforms standard
registration methods.
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