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ABSTRACT

Salient motion detection is a challenging task especially

when the motion is obscured by dynamic background mo-

tion. Salient motion is characterized by its consistency while

the non-salient background motion typically consists of dy-

namic motion such as fog, waves, fire etc. In this paper, we

present a novel framework for identifying salient motion by

modelling the video sequence as a linear dynamic system

and using controllability of states to estimate salient mo-

tion. The proposed saliency detection algorithm is tested on

a challenging benchmark video dataset and the performance

is compared with other state-of-the-art algorithms. The re-

sults of the comparison indicate that the proposed algorithm

demonstrates superior performance when compared to other

state-of-the-art methods and with higher computational effi-

ciency.

Index Terms— motion saliency, controllability, dynamic

textures

1. INTRODUCTION

Detection of salient motion in a video is useful to support ap-

plications like video surveillance, compression and retarget-

ing. It allows fast zooming into areas of suspicion in surveil-

lance videos, higher compression ratio in frames or regions

that do not have salient motion and finally, regions without

salient motion can be intelligently removed from the frame to

resize it for display on devices with different form factors.

Videos shot in natural settings typically consist of back-

grounds with dynamic motion and foregrounds with consis-

tent motion. Some videos are shot with a static camera and

the objects remain in the frame for a reasonable length of time

in the video, e.g. a video of a concert. However, others are

shot to track an object of interest. Videos of this type consists

of large background motion while having relatively less fore-

ground motion. Salient motion is characterized by the con-

sistency in motion irrespective of the intent with which the

video is shot. This broad definition of salient motion elimi-

nates background motion like swaying of the leaves etc.

The task of identifying salient motion in videos is a chal-

lenging one owing to the various types of motion present in

videos. Bugeau et. al. [1] compensate for camera motion

and detect groups of pixels arising from consistent motion.

However, this method computes consistency from motion

only over immediate frames and may not perform well un-

der background motion across a short duration. [2] perform

background subtraction by using an adaptive algorithm mod-

elled based on Gaussian mixture probability density, the

parameters of which are recursively updated. Frame to frame

optical flow measure is utilized to compute the saliency of

each pixel as the straight line distance travelled by the pixel

across a set of frames in [3]. Mahadevan et.al. [4] proposed

a spatio-temporal saliency detection algorithm which used

biologically motivated discriminant center-surround saliency

hypothesis. It utilizes the dynamic texture model proposed

by Doretto et. al. [5] for representing the dynamic motion

present in the scene. The saliency measure of a particular

location is calculated as the KL divergence between the dy-

namic texture models of the center and the surround windows.

The efficiency of this algorithm however, depends mainly on

the size of the center and surround windows. A bottom-up

computational framework using low-level features is pro-

posed for identifying visual attention from videos in [11].

In [6], Monnet et. al. use an on-line auto-regressive model

to predict the dynamic background motion. Salient motion

is detected by comparing the predicted dynamic background

and the observed frame. Most recently, Gopalakrishnan et.

al. [7] proposed a salient motion detection method by relating

saliency to observability of states when the video is modeled

as a dynamic texture. This approach requires the observabil-

ity measure of a frame from different frame buffers in order

to identify the final salient motion. However, the number

of frame buffers required and the buffer size used to detect

salient motion adds a lot of computational overhead.

In this paper, we represent the frames of the video using

the dynamic textures model and relate the states of the lin-

ear system to saliency using the notion of controllability. In

this framework, we exploit the controllability of the dynamic

background in estimating the salient foreground motion. The

proposed method is generic, in the sense that it generates an

accurate saliency map for videos with both local and global

motion. This paper is organized as follows. Section 2 dis-

cusses the dynamic textures model and the relationship be-
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tween salient motion and controllability of a linear system.

Section 3 discusses the proposed method for calculating the

saliency map and section 4 discusses the quantitative results

of the proposed method with state-of-the-art methods before

concluding in section 5.

2. STATE-SPACE MODEL TO ESTIMATE SALIENCY

The dynamic texture model [5] represents the observed output

of a linear dynamic system y(t) ∈ R
m at time t as an ARMA

model given by

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Dv(t) (1)

where A ∈ R
n×n is the state transition matrix describing the

evolution of the state vector x(t) ∈ R
n. The input Gaussian

observation noise is given by u(t) which is an IID realization

from the density N (0, Q), where Q ∈ R
n×n is the covariance

matrix of the zero-mean gaussian process. v(t) is the output

observation noise sampled from N (0, R), where R ∈ R
m×m

is the covariance matrix. The matrix C ∈ R
m×n relates the

current state to the observed output and is called the appear-

ance matrix. Matrix B is the control matrix that determines

how the system input affects the state change while matrix D
is the feed-through matrix which combines the non-dynamic

transfer responses between the input and the output. The ma-

trices A,C,Q and R are estimated using the method proposed

by [5] from the measurements y(1), y(2) · · · y(τ). A video

can hence be completely described using the linear system

representation shown above.

2.1. Controllability of a State Space Model

Controllability describes the possibility of finding an in-

put signal that could drive the system from one arbitrary

state to another in a finite duration [8]. An LTI system

is controllable if and only if its controllability matrix ζ
given by

[
B AB A2B · · · Ap−1B

]
is full rank.

If Rank(ζ) < p, only a subspace pc is controllable. Under

the given system representation, the inputs will not be able

to change the states of p − pc variables. The above stated

definition for the controllability of a linear system provides

a subspace of the system which is controllable and another

which is not controllable. We explore the relationship be-

tween the controllability of the states of a system and salient

motion present in a video in the next section.

2.2. Measure of Controllability and its Relation to Saliency

Backgrounds in videos shot with static cameras could be ei-

ther static as in a highway surveillance video or dynamic due

to fluttering of leaves or the motion of waves etc. However,

the background in a tracking shot would always be dynamic,

e.g. camera tracking a basketball player. Here, we use the

notion that salient motion is consistent but not restricted to

be in a straight line as described in [3]. The inconsistent

background is better modeled using dynamic textures and

hence, the inputs can control the states corresponding to the

background better than those corresponding to the foreground

salient region. Moreover, irrespective of the type of motion

present in videos, the consistency in salient motion makes the

background motion to be relatively much more controllable

than that of the salient motion in a frame buffer. Since the

observation y(t) depends on an affine transformation of the

state x(t), the controllable states generate an estimated output

which is close to the background of the observation. Since

salient motion is associated with compact motion in the fore-

ground, the framework allows identification of such motion.

Tarokh [9] proposed a quantitative measure for controllabil-

ity of a linear system based on the eigenvalues of the state

transition matrix A. The controllability measure for the ith

eigenvalue λi is calculated as

mci = |δi|[f∗
i BBT fi]

1/2 (2)

where fi is the left eigenvector corresponding to λi of the

state transition matrix A and δi is
∏n

j=1(λi − λj) for i �=
j. mci measures the controllability of the eigenvalues of A.

However, we are interested in estimating the controllability

of the states x(t) of the system. For this, first we evaluate

nci = fT
i B, which is the measure of controllability of the ith

state corresponding to the ith eigenvalue of A. The cumula-

tive controllability of the state x(t) is the sum of the control-

lability measures corresponding to all the eigenvalues, i.e.,

nc(t) =
∑n

j=1 ncj . Thus, each state x(t) has its associated

controllability vector nc(t). Finally, a state controlled output

estimate yc(t) of the linear system can be derived in a man-

ner similar to eqn. 1, but using controlled states which are de-

rived by scaling the state vector with the controllability vector

as xc(t) = nc(t) ∗ x(t), where * indicates component-wise

multiplication.

We illustrate the state-controlled estimate of the output in

fig. 1 which shows a frame from the original video in fig. 1(a)

and the estimate yc(t) in fig. 1(b). The images are mean sub-

tracted versions of yc(t) in order to show the effect of con-

trolling the states of the system. Row 1 shows ‘Freeway’

video, which essentially consists of static but foggy back-

ground. The estimated output shows that the controllability

of the background is better than that of the foreground re-

gions of moving vehicles, which correspond to large errors

in estimation. The second row is the ‘Bottle’ video of a bot-

tle floating on the waves and hence, has motion in the back-

ground. The motion in the waves have been effectively mod-

eled while the consistent motion present in the bottle is esti-

mated poorly. The third row shows the ‘Jump’ vidoe which

is a challenging example having three components - static

background, dynamic background due to smoke and salient

foreground motion of the cyclist. Here, the estimation of the

static background is perfect, while the estimation of the dy-
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namic background is poorer. However, the estimation error

for salient foreground is worse. Since the controllability of

the states corresponding to the salient motion is worse than

for the background states, it helps us to identify salient mo-

tion. Object appearance encoded by the appearance matrix

C is unaffected for those states which cannot be controlled.

This serves as a cue for identifying the salient objects in the

scene. The advantage of using the proposed method is that

the background motion can be estimated using a very small

frame buffer τ , as the controllability measure calculates the

relative controllability of the matrix A.

  

  

 
(a) 

 
(b) 

 

Fig. 1. (a) Observed output y(t) (b) State-controlled estimate

yc(t)
3. SALIENCY MAP

The saliency map corresponding to a frame in the video is a

gray scale image with higher intensity indicating pixels with

higher saliency. We generate the saliency map from two sepa-

rate maps - the pixel distance map which is suitable for videos

shot with a static camera and the sharpness map which is suit-

able for videos tracking an object. Thus, the two maps serve

to complement each other so that the proposed framework

caters to videos with generic motion.

3.1. Pixel Distance Map, Dp

The dynamic background motion can be estimated much

more accurately than the consistent salient motion as the

states of the pixels in the background are relatively more con-

trollable. Hence, the pixel distance between the background

pixels in the two frames yc(t) and y(t) is much lower than

that of the salient motion. The pixel distance map Dp(t) for

frame t is calculated as Dp(t) = (y(t) − yc(t))
2. Fig. 2

shows the result of applying the proposed algorithm on four

different videos namely ‘Birds’ (row 1), ‘Hockey’ (row 2),

‘Ocean’ (row 3) and ‘Skiing’ (row 4). Fig. 2(a) shows the ob-

served output y(t) while the distance maps Dp(t) generated

for the videos are shown in fig. 2(b). It can be seen that in

videos having no global motion (Birds, Ocean and Skiing),

the controllability of the background provides a reasonable

estimate of the dynamic motion as shown by their respective

distance maps to y(t). However, the Hockey video consists of

highly competing motion which manifests itself in the state-

controlled observations. Hence, the yc(t) for the competing

motion has a large distance to the observed y(t).

3.2. Sharpness Map, Sp

Videos that track an object of interest consist of dynamic

background motion as well as competing foreground motion.

As we are interested in a measure for the controllability of

the states of the linear system, motion present in competing

objects would often have a controllability measure similar to

that of the salient object. The controllability vector does not

alter the states of the salient foreground object in the state-

controlled output yc(t) whereas the background appearance

is suppressed. As shown in fig. 1, the dynamic texture model

can roughly estimate the appearance of the salient object.

For a tracking shot, the appearance of the salient object is

consistent across frames while the background appearance is

not. The sharpness map captures the appearance of the salient

object and is estimated by passing yc(t) through a low-pass

filter and comparing the intensity variations between neigh-

bouring pixels in the low-pass filtered version and yc(t) [10].

The sharpness maps are shown in fig. 2(c). It can be clearly

seen that the pixel distance map Dp remove stray salient re-

gions in videos with local motion while the sharpness map

Sp removes the stray salient regions in video sequences with

dynamic background motion and global motion. The final

importance map Ip is calculated as the product of the two

normalized maps. The generated final importance map is

shown in fig. 2(d).

4. EXPERIMENTAL RESULTS

We evaluate our algorithm for salient motion detection us-

ing a benchmark dataset provided by [4]. The database has

a total of 18 videos out of which 13 have local motion and

5 have global motion and all of them have competing back-

ground motion. Our experiments were conducted using a

fixed number of states n = 10 and buffer size of 11 frames,

which is the minimum that is required to estimate the linear

system with 10 states. The sharpness map is estimated for

each pixel with a window size of 8 × 8. Each frame is re-

sized to 128 × 128 for faster processing. Table 1 shows the

Equal Error Rate (EER) as a quantitative evaluation measure
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Fig. 2. (a) Observed output y(t) (b) Pixel distance map (c)

Sharpness map (d) Final saliency map

to compare our proposed algorithm (SC) with other state-of-

the-art algorithms viz., Discriminant Saliency (DS)[4], Mon-

net et. al (MO)[6], Itti et. al. (IT)[11], Modified Gaussian

Mixture Model (GMM)[2] and Sustained Observability (SO)

[7]. Only EERs for four videos from each type of motion are

shown due to lack of space. The proposed method achieves

the second best average EER after [4] for both local as well

as global motion. However, it has a computational advantage

over the other methods since it uses a smaller frame buffer be-

cause the framework is based on a relative measure of control-

lability of the salient and the background states. Specifically,

the best improvement in local motion is for the ’Birds’ video

which has waves in the background competing with the mo-

tion of birds in the foreground. Here, the background is suc-

cessfully modeled by the dynamic texture and the proposed

algorithm ensures that it is more controllable than the fore-

ground region of the birds. Similarly, the best improvement

for global motion is for the ‘hockey’ video. Overall, the pro-

posed method performs the best in 9 out of the 18 videos with

6 out of 13 for local motion and 3 out of 5 for global motion.

5. CONCLUSION

We propose a novel approach to detect saliency from motion

using the concept of controllability. The proposed method

performs second best among state-of-the-art methods while

having a computationally efficient approach. The proposed

approach has been shown to be robust enough to handle

videos with generic motion types.
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