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ABSTRACT

This paper presents a method for recognizing trajectory-based

human activities. We use a discriminative latent variable

model in our proposed method, which considers that human

trajectories are made up of some specific motion regimes, and

different activities have different switching patterns among

the motion regimes. We model the trajectories using Hidden

Conditional Random Fields (HCRFs) and the motion regimes

act as sub-structures in the model. Experiments using both

synthetic and real data demonstrate the superiority of our

model in comparison with other methods, including Hidden

Markov Models (HMMs) and Conditional Random Fields

(CRFs).

Index Terms— human activity recognition, trajectory

classification, hidden conditional random field

1. INTRODUCTION

The goal of human activity recognition (HAR) is to under-

stand what people are doing from their position [1], figure

[2], motion [3], or other spatiotemporal information derived

from video sequences. With the potential for wide applica-

tions, HAR has been actively investigated for tens of years. A

focus of recent interest is the use of trajectory data, to learn

to recognize human behaviors in which a person is engaged

over a long period of time [1, 4, 5]. From daily experience we

know that human behaviors usually consist of simple motion

regimes. For example, the behavior of a person “crossing a

park” may be decomposed into “moving east first” and “then

moving north”. This observation underlies the use of models

including hidden states, which have a capacity for capturing

intrinsic sub-structures.

Hidden Conditional Random Fields (HCRFs) are discrim-

inative latent variable models. HCRFs are based on Condi-

tional Random Fields (CRFs) [6], and moreover, they use in-

termediate hidden variables to model the latent structures of

the input domain [7]. Therefore they avoid the unrealistic in-

dependence assumption of Hidden Markov Models (HMMs)

and have a capacity for capturing sub-structures.

In this paper, we propose a method for trajectory-based

human activity recognition based on HCRFs. In our method,

we use a set of latent variables to model the unobservable

motion regimes and different activities are recognized which

use different switching patterns among the motion regimes.

We examine our model on both synthetic and real data sets

and compare its performance against HMM-based and CRF-

based methods. Experimental results show the superiority of

our model.

2. HUMAN ACTIVITY RECOGNITION

2.1. Trajectory Model

Our task is to learn a mapping from a sequential trajecto-

ry X to a single activity label y. Formally, each trajecto-

ry X is a vector of observations, X = {x1, x2, ..., xT }, and

each observation xt implies the displacement of a person from

time t-1 to time t (t = 1, ..., T ). xt is represented by a D-

dimension local feature, φ(xt) ∈ RD. Each y is one of the

activity labels represented by a set of constants. Assume we

have Y activities, then y ∈ {1, 2, ...,Y}. Based on the ful-

ly observable CRFs [6], we introduce a vector of latent vari-

ables H = {h1, h2, ..., hT } to model the intermediate mo-

tion regimes contained in complex activities [7]. Each ht is a

member of a finite set H, which is the collection of all pos-

sible motion regimes. From above definitions, it is clear to

see that a trajectory recognition task is intrinsically a tempo-

ral classification problem. Based on the general HCRFs [7]

and considering the specific characters of our task, we define

a linear-chain structure in order to capture the temporal dy-

namics (see Fig.1). In this structure, the fully connected max-

imal cliques include pairs of neighboring states (ht−1, ht).
The connectivity between each latent state and observations,

which implies the long range dependencies among observa-

tions, is unrestricted. We introduce a window size w to define

the connectivity. w = 0 indicates that the current state is only

depend on the current observation, while w > 0 indicates that

neighbor observations from t− w to t+ w are also used.

Given the above definitions, first we model human trajec-
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Fig. 1. The chain structure HCFR for trajectory recognition.

tories in a CRF way as

P (y,H|X; θ) =
1

Z(X; θ)
exp(

T∑
t=1

F (y, ht−1, ht,X; θ)),

(1)

marginalizing out the latent variables H = {h1, h2, ..., hT }
yields the following HCRF form

P (y|X; θ) =
∑

H

P (y,H|X; θ)

=
1

Z(X; θ)

∑
H

(exp(
T∑

t=1

F (y, ht−1, ht,X; θ))),

(2)

where the normalization factor Z(X) take the form as

Z(X; θ) =
∑
y′,H

exp(
T∑

t=1

F (y′, ht−1, ht,X; θ)). (3)

We define the feature function F as follows

F (y, ht−1, ht,X; θ) =
∑
a∈A

θafa(y, ht−1, ht,X)

+
∑
b∈B

θbfb(y, ht,X),
(4)

where A is the set of edge features and B is the set of node

features, fa is a predefined transition function which depends

on a pair of latent variables and fb is a predefined state func-

tion which depends on a single latent variable in the model.

θ = {θa, θb} are parameters to be estimated from training

data.

2.2. Parameter Estimation

Our training data set consists of N labeled trajectories, T =
{(X1, y1), (X2, y2), ..., (XN , yN )}. The parameters can be

obtained by optimizing the conditional log-likelihood of the

training data

L(θ) =
N∑
i=1

Li(θ) =
N∑
i=1

logP (yi|Xi; θ). (5)

While in practice, we often regularize the problem by op-

timizing a penalized likelihood: L(θ) + R(θ), where R(θ)
is the log of a Gaussian prior with variance σ2, i.e., R(θ) ∼
exp(− 1

2σ2 ‖ θ ‖2) [8].

Likelihood maximization leads to an optimization task,

which can be solved using gradient ascent methods. In our pa-

per, we solve this problem using a limited-memory variable-

metric gradient ascent method (BFGS) [3].

2.3. Classification

For testing, given a new observed trajectory X, we want to

classify it into one of the activities y∗ ∈ Y which maximizes

the conditional probability

y∗ = argmax
y∈Y

P (y|X, θ∗), (6)

where the values of θ∗ are learned from the training data.

Since HCRFs can be considered as undirected graphical

models (UMGs), the inference tasks can be solved using be-

lief propagation.

3. EXPERIMENTS

We run a variety of experiments using both synthetic and real

data. To evaluate the performance of our model, comparisons

with other approaches are also given.

3.1. Synthetic Data

We first run a simple synthetic example in an ideal sce-

nario [1], which aims at demonstrating the effectiveness

of our model. In this experiment, we consider two activi-

ties shown in Fig.2. The two activities depicted in red and

green share two motion regimes: moving horizontally and

moving vertically. The mean of horizontal displacements

is T1 =
[
0.02 0

]T
, and the mean of vertical displace-

ments is T2 =
[
0 0.02

]T
. Corresponding covariances are

Q1 = Q2 = 10−3I. The only difference between the two

activities resides on the switching patterns. Respectively, for

the red and green activities, the transition matrices are

B1 =

[
0.95 0.05
0.05 0.95

]
B2 =

[
0.5 0.5
0.5 0.5

]
.

Given the above parameters, we generate 100 training

trajectories and 100 testing trajectories using HMMs. The

reason why we use HMMs to generate the synthetic data is

that, discriminative models condition on observations with-

out modeling them, thus, without knowledge of observations,

they are unable to generate data.

From the way we generate this synthetic data set, it is clear

to see that each frame in a trajectory corresponds to a motion

regime. Thus, we only run the experiment using a HCRF

with window size w = 0. Finally, the classification accuracy
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Fig. 2. Two synthetic activities sharing the same motion

regimes, with different switching patterns. Training da-

ta(left), testing data(right).

(a) (b) (c) (d)

Fig. 3. Examples of the four activities defined for the shop-

ping scenario: (a) entering; (b) leaving; (c) passing; (d)

browsing.

obtained on the testing data is 100%, showing that our model

possibly have a capacity to recognize trajectories.

3.2. Real Data

3.2.1. Description

We consider two scenarios in our experiments with real data,

which include a shopping center and a university campus. In

the shopping center scenario, four human activities have been

predefined. While in the campus scenario, seven human activ-

ities have been predefined. Fig.3 shows examples of trajecto-

ries in the shopping center scenario and Fig.4 shows examples

of trajectories in the campus scenario.

A notable point in the experiments with real data is that,

since equation (2) has to marginalize out the latent variables,

our model works with a finite number of motion regimes. Es-

timating the number of motion regimes is a model selection

task, and exact methods have already existed for this task [9].

Since model selection is not the focus of our paper, we em-

ploy the model selection result of [1]. Thus, for the shop-

ping data, we define five motion regimes: “stopped”, “moving

north”, “moving south”, “moving east”, and “moving west”.

While for the campus data, we define nine motion regimes:

“stopped”, “moving north”, “moving north-east”, “moving

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4. Examples of the seven activities defined for the cam-

pus scenario: (a) entering building; (b) leaving building; (c)

walking along; (d) crossing park up; (e) crossing park down;

(f) passing through; (g) wandering.

east”, “moving south-east”, “moving south”, “moving south-

west”, “moving west”, and “moving north-west”.

Finally, we get 53 available trajectories in the shopping

scenario and 143 available trajectories in the campus scenario.

3.2.2. Classification Results

We consider two different procedures for splitting the avail-

able data into training and testing sets: 1) a single train-

ing/testing splitting; 2) a complete p-fold cross validation.

For the shopping scenario, the first procedure picks three

samples of each activity to generate the training set, and the

rest samples generate the testing set. While for the campus

scenario, the first procedure splits all available data into t-

wo disjoint sets with each set containing 50% of all data.

The second procedure performs a complete ten-fold cross

validation for both scenarios.

Experiment on same data sets, we evaluate our model with

varying levels of long range dependencies (with different win-

dow size) and compare the performance with HMM and CRF

models.

In our HMM experiments, we consider the switched dy-

namical HMM (SD-HMM) proposed in [1], which is actually

a two layer hierarchical HMM. The lower layer consists of

a bank of Gaussians which imply the motion regimes and the

higher layer models the switching among the motion regimes.

In our CRF experiments, each input trajectory sequence

X = {x1, x2, ..., xT } is associated with a sequence of labels

Y = {y1, y2, ..., yT }. In training data, the label sequences are
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Methods 1st split procedure 2nd split procedure

HMM 70.73% 70.73%

CRF w=0 12.20% 12.77%

CRF w=1 17.07% 10.67%

HCRF w=0 85.37% 85.11%

HCRF w=1 80.49% 76.60%

HCRF w=2 80.49% 80.85%

HCRF w=3 75.61% 78.72%

Table 1. Comparison of Recognition Performance for the

Shopping Scenario

Methods 1st split procedure 2nd split procedure

HMM 82.61% 87.60%

CRF w=0 10.14% 9.302%

CRF w=1 13.04% 10.85%

HCRF w=0 88.41% 92.25%

HCRF w=1 91.30% 93.02%

HCRF w=2 78.26% 89.92%

HCRF w=3 68.12% 87.60%

Table 2. Comparison of Recognition Performance for the

Campus Scenario

generated by repeating the target activity label y T times. For

a testing trajectory sequence, the final activity label assigned

is the label which appeared most frequently in the decoded

sequence [7].

Table 1 shows the results for the shopping experiments

and Table 2 shows the results for the campus experiments.

As we can see, our approach performs better than the HMM-

based and CRF-based methods.

From the results in Table 1, we can see that our approach

performs best at window size 0. Though this implies that the

independence assumption is correct, our model still perform-

s better than HMMs. From the results in Table 2, we can

see that increasing the window size from 0 to 1 improves the

performance of our model. This implies that incorporating

appropriate degree of long range dependencies is helpful.

It is a foregone conclusion that CRFs achieve bad results.

We try to recognize human activities by modeling the inter-

mediate motion regimes, but CRFs have no capacity to cap-

ture sub-structures.

4. CONCLUSIONS

In this work, we have presented a method for recognizing

trajectory-based human activities. Our method models tra-

jectories using HCRFs while shared motion regimes act as

latent variables. To validate our model, we run a variety of

experiments using both synthetic and real data and compare

the performance with other methods. Experimental results

have shown that our method outperforms both HMM-based

methods and CRF-based methods.

For future research, the proposed method can be embed-

ded with model selection methods. In this way, the number of

latent variables can be obtained automatically and the model

will be more flexible. Another possible direction is extend-

ing the proposed method to infinite Gaussian mixture models.

In this way, techniques of variational inference will play an

important role.
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