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ABSTRACT 
 
For showing 2D video contents on 3DTVs, 2D-to-3D 
conversion is required to convert 2D contents to 3D ones. In 
general, the conversion process consists of depth map 
generation, which estimates the 3D geometry of the scene, 
and rendering, which produces output stereo images. We 
propose a depth map refinement algorithm which uses 
adaptive decimation and guided interpolation to refine the 
depth map. The proposed approach eliminates unnecessary 
textures and keeps object boundaries on the depth map. In 
the refined depth map, the transition of depth values within 
an object is smooth, the object boundaries on the depth map 
are aligned to those on the input image, and the foreground 
can be clearly separated from the background. These 
characteristics on the depth map help to achieve better 3D 
visual perception. Compared to the state-of-the-art 
approaches, the blurriness and object boundary alignment 
are easier to be adjusted by the proposed two-stage 
operations, and the computational complexity of the 
proposed algorithm is much lower.  
 

Index Terms—2D-to-3D conversion, depth map 
generation, 3D reconstruction, 3DTV 
 

1. INTRODUCTION 
 
Since the success of the movie Avatar, which was released 
in 2009, 3D has enjoyed growing popularity. Almost all the 
TV manufacturers put 3D functionality into their high end 
TV products. One of the important required 3D techniques is 
2D-to-3D conversion, which converts the traditional 2D 
videos into 3D ones. It is important because most contents 
are still in the traditional 2D format. A usual processing flow 
for 2D-to-3D video conversion is shown in Fig.  1. For a 2D 
monocular video input, objects and their geometry 
perspective information are estimated and modeled, and then 
a depth map can be generated. With the produced depth map, 
depth image based rendering (DIBR) can then convert the 
original 2D monocular video to stereoscopic videos for the 
left and right eyes, respectively. In this processing flow, the 
most important issue is how to generate the depth map.  

 

Fig.  1 The usual processing flow for 2D-to-3D conversion 

In order to correctly generate the depth map of the input 
2D video, various cues are applied to estimate the depth 
information. Many depth generation methods were proposed 
to retrieve the depth information using different 
combinations of depth cues. Depth values should be similar 
within the same object, and the object/background 
separation regions should be aligned with object boundaries 
to provide better visualization effect. Machine learning 
algorithms were proposed to extract features to depth 
information [1] [3]. Segmentation based approaches were 
proposed to separate the objects from background. Color 
segmentation [4] and motion segmentation [5] were used to 
find out the objects and their possible depth map. The 
machine learning and segmentation based approaches give 
good object boundaries on the depth map but require too 
much computational power. It is also hard to keep the 
temporal stability for segmentation based approaches. They 
both produce noisy depth map due to the limitation of 
segmentation and machine learning based approaches. 

Computed image depth (CID) approaches were proposed 
to convert the image characteristic such as contrast and 
sharpness to depth values [2]. The CID approaches produce 
a rough depth map from local statistics in an image. CID 
becomes a popular way of generating the depth values for 
2D-to-3D conversion owing to its low complexity and 
smooth 3D effect. It eliminates unnecessary textures in the 
image through block-based operations, but the object 
boundaries are also blurred. With blurred object boundaries 
on the depth map, the depth perception is reduced. To 
enhance the stereoscopic effect, the object boundaries 
should be distinguishable on the depth map. To align the 
object boundary in the depth map, the bilateral filter based 
approaches were proposed. The bilateral filter was used as a 
post-processing procedure to make the depth values similar 
within the same object [6] [7]. The bilateral filter helps to 
refine the blurriness and object boundaries. However, it is 
hard to adjust the parameters to achieve both aggressive 
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smoothing and edge preserving simultaneously. Moreover, 
the Gaussian filters in bilateral filter require too much 
computational power.  

In this paper, we proposed a depth map refinement 
algorithm using two-stage operations – adaptive decimation 
and guided interpolation. The low-pass filters used for 
decimation and adaptive filters used for interpolation are 
designed to control both the blurriness and object 
boundaries with low computational complexity. Each of the 
operation handles different type of tasks to produce a depth 
map aligned with object boundaries. This paper is organized 
as follows: The depth map refinement algorithm is described 
in Section 2. In Section 3, the experimental results of the 
proposed algorithm are shown. A complexity analysis is 
discussed in Section 4. Finally, a conclusion is given in 
Section 5. 

 
2. DEPTH MAP REFINEMENT BY ADAPTIVE 
DECIMATION AND GUIDED INTERPOLATION 

 
The proposed depth map refinement approach is shown in 

Fig.  2. The proposed approach is divided into two stages: 
adaptive decimation and guided interpolation. In the 
following sub-sections, the algorithm for obtaining initial 
depth map is described first. The adaptive low-pass filtering 
and decimation are then presented. Finally, the guided 
interpolation which reconstructs the decimated depth data 
with consideration to the object boundary is discussed.  
 

 

Fig.  2 Flowchart of the proposed depth map generation approach 

   
(a) (b) (c) 

Fig.  3 An example: (a) Initial depth map I(x,y) (b) Adaptive 
decimated data h(x,y) (c) Guided interpolated data 
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An initial depth map can be generated by the previous 
approaches such as CID or segmentation based approaches. 
We use a CID-like depth mapping approach to map the 
depth values. CID generates rough depth values for objects 
[2]. One may use CID or other kinds of approach such as 
segmentation based approaches or machine learning 
approaches for the initial depth map. 

B. 
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After the initial depth map is obtained, we use an adaptive 
low-pass filter to eliminate unnecessary details on the 
mapped depth values and to reduce the noise in the initial 
depth map. We designed several kinds of different low-pass 
filters which correspond to different texture complexities. 
The adaptation of the low-pass filters is based on the 
analysis of the texture complexity. The texture complexity is 
presented by the sum of Sobel edge gradients here. The edge 
gradient is defined as in the following equation:  
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where G(p) is the edge gradient at location p, L(.) is the edge 
filter coefficient function, W is the footprint of the edge filter, 
and I(p) is the luma value of pixel p. The texture complexity 
is classified by thresholding. When the texture complexity is 
high, the pass-band of the low-pass filter should be low to 
reduce noise in the depth map. When the texture complexity 
is low, the pass-band of the low-pass filter should be higher 
to preserve more details.  

The adaptive low-pass filter procedure is combined with 
downsampling as shown in the following equation to form 
an adaptive decimation:  
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where Ddeci(p) denotes the values on decimated coarse depth 
map, M is the decimation scale, W is the footprint of the 
adaptive low-pass filter, Dinit(p) is the depth value on the 
original input depth map, and h(p) is the adaptive low-pass 
filter. In our implementation, the adaptation of M and low-
pass filter selection is at frame level. M can be 8, 16, 32, and 
64. Once the texture complexity is calculated, M and its 
corresponding low-pass filter are determined by a mapping 
function which is obtained from an offline training process. 
An example of the proposed approach is shown in Fig.  3. 
The initial noisy depth data in Fig.  3(a) is filtered and 
decimated by 4x4 (M=4) as shown in Fig.  3(b). After the 
decimation, a coarse depth map is obtained.  

C. ����	�����	�
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After the adaptive low-pass filter and decimation, we 
propose the guided interpolation to reconstruct a depth map 
that is consistent with object boundaries. The depth 
interpolation we used is a bilinear interpolation which has a 
triangular kernel [9] . One may also change the triangular 
kernel to other kernels such as Lanczos kernel to get better 
smooth areas. An example of the interpolation scheme is 
shown in Fig.  4. The interpolation output is defined as the 
following equation: 
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where f(p) is the interpolated depth value at location p, N(p) 
is the four p-neighboring pixels on the decimated grid, 
Ddeci(q) is the depth value at location q on the coarse depth 
map, and l(p,q) represents the reconstruction filter 
coefficient. The reconstruction filter coefficient is expressed 
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as the inverse of the distance to the decimated grid, i.e. the 
phase of the bilinear interpolation here. g(F(p,q)) is a guided 
weighting function which may be defined as the guided 
image filter in [8], Gaussian function, or trained Wiener 

filter. Here we use a Gaussian function we qpFa /),(−

 from 
part of the bilateral filter as g(F(p,q)). F(p,q) denotes the 
image characteristics at location p and q. We use the 
difference of intensity values in the original image, I(p)-I(q), 
as F(p,q) in our implementation. w is a normalization factor 
for the guided weighting function. This guided weighting 
function generates similar depth values for the neighboring 
pixels with similar intensities.  

 

Fig.  4 Guided interpolation scheme, p=(x,y), q11=(x1,y1), 
q12=(x1,y2), q21=(x2,y1), q22=(x2,y2) 

Owing to the decimation and guided interpolation, the 
computational complexity is quite low compared to the 
bilateral filter based approaches. The results of the proposed 
guided interpolation of the example in Fig. 3(b) are shown in 
Fig.  3(c). The noise in the depth data in Fig.  3(a) is reduced, 
and the depth map is aligned with object boundary.  

After the depth map is generated, the stereoscopic video 
is rendered by depth image based rendering (DIBR).  
 

3. EXPERIMENTAL RESULTS 
 

We use two video clips and two images from Kodak 
photo database to demonstrate the results of the depth map 
refinement. The low-pass filter footprint for M=32 is 48x48. 
We set 32x32 as the Gaussian window size in the bilateral 
filter based approach for comparison. The first video clip 
shown in Fig.  5(a) is the opening video of a cartoon – One 
Piece from YouTube. The result of the proposed approach in 
Fig.  5(d) shows that our depth map refinement works well 
even for synthetic video. The object separation effect is 
clearer than the bilateral filter based approach in Fig.  5(c). 
Our proposed approach produces similar depth values for 
the whole sail, while the false line structures of the sail on 
the ship can be observed in Fig.  5(c). The second video clip 
is a movie trailer – Red Cliff from YouTube. The soldiers in 
the same row are on the same depth layer for the proposed 
approach.  

In the results of Kodak photo database shown in Fig.  7 
and Fig.  8, we can find that the bilateral filter based 
approach, as shown in Fig.  7(c) and Fig.  8(c), produces 
false depth values on the tides of the sea and the roof of the 

house. The textures are not blurred due to their high luma 
difference. We had tried many different correlation factors 
for the bilateral filter. Even if we use lower luma correlation 
for the bilateral filter as shown in Fig.  7(b) and Fig.  8(b), 
the depth values are still wrong since the luma difference is 
too high. The results from the proposed approach shown in 
Fig.  7(d) and Fig.  8(f) provide better results which make 
objects more distinguishable from each other compared to 
the blurred results produced by the bilateral filter. We 
change the M from 32 to 16 and 8 to preserve more details 
as the results shown in Fig.  8(d) and Fig.  8(e). No matter 
what M is chosen, the objects on the depth map are always 
consistent with their shape boundary. By using the proposed 
approach, one can adjust the pass-band of the low-pass filter 
in the first stage to eliminate unnecessary textures and 
recover the object boundaries in the second stage easily.  

 
4. COMPLEXITY ANALYSIS 

 
The complexity of the proposed approach is analyzed by 

operations for one pixel. As for window size 32x32, the 
pixel operation required for the bilateral filter based 
approach is as following: 

divaddmulxGxGtotal tttttt +⋅⋅⋅+⋅⋅++= 23232323232323232
 

where the tG32x32 is the time used by Gaussian filter with 
window size 32x32. The tmul, tadd, and tdiv denote for the time 
used by multiplication, addition, and division. For our 
proposed approach with decimation scale M=32, the 
required pixel operation is as following:  

divaddmulxGxLtotal tttttt +⋅⋅+⋅++

⋅

= 234
3232

1
224848

, 

where the tL48x48 is the time used by the corresponding low-
pass filter with footprint 48x48. The reduction of the 
complexity is quite large due to the decimation in the first 
stage of the proposed approach. The operations of Gaussian 
filter and multiplication are highly reduced. The experiment 
shows that there is at least 8 times of run time difference 
between the two approaches. With the proposed approach, 
real-time and parallel operations for both software and 
hardware are more feasible.  
 

5. CONCLUSIONS 
 

We proposed a depth map refinement algorithm for 2D-
to-3D conversion, which includes adaptive decimation and 
guided interpolation. The adaptive decimation helps to 
generate smooth depth map and to greatly reduce 
computations. The guided interpolation makes the depth of 
the objects consistent with their shape boundary. The 
subjective quality of this 2D-to-3D conversion is 
comparable to the state-of-the-art approaches [6][7], and the 
whole algorithm is flexible to be adjusted to different styles. 
The computational complexity of the proposed approach is 
much lower than the bilateral filter based approaches. The 

1439



algorithm can also be used to refine the depth map generated 
by depth sensor or stereo matching.  
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(a) (b) 

  
(c) (d) 

Fig.  5 (a) The original image of One Piece (b) the red-cyan stereoscopic 
video results of the proposed approach (c) the depth map by the bilateral 

filter based approach (d) the depth map by the proposed approach 

  
(a) (b) 

  
(c) (d) 

Fig.  6 (a) The original image of Red Cliff (b) the red-cyan stereoscopic 
video results of the proposed approach (c) the depth map by the bilateral 

filter based approach (d) the depth map by the proposed approach 
 

  
(a) (b) 

  
(c) (d) 

Fig.  7 (a) The original image from Kodak photo database (b) the depth map 
generated by bilateral filter with low luma correlation (c) the depth map 

generated by bilateral filter with high luma correlation (d) the depth map of 
the proposed approach  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig.  8 (a) The original image from Kodak photo database (b) the depth map 
generated by bilateral filter with low luma correlation (c) the depth map 

generated by bilateral filter with high luma correlation (d) the depth map of 
the proposed approach with M=8 (e) the depth map of the proposed approach 

with M=16 (f) the depth map of the proposed approach with M=32 
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