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ABSTRACT 

 
This paper presents a novel technique for the depth 
estimation from the monocular outdoor images. This 
technique combines three major components: the camera 
projection model, object classifier, and dark channel 
modifier. The camera projection model estimates a 
reasonable relative depth by the camera parameters from the 
exchangeable image file format (EXIF). The object 
classifier categorizes objects into four types; sky, ground, 
man-made and natural objects, and then assigns initial depth 
to each object. Finally, the initial depth is further corrected 
by dark channel model. The experiments show our 
estimated depth map is close to the ground truth, as well as 
providing the satisfying stereo visual results.1 
 

Index Terms— depth map, perspective projection, 
object classification, horizon detection, vanishing point 
 

1. INTRODUCTION 
 
3D equipment has entered in our live, such as 3D display, 
stereoscopic capture, games and so on. The perception of 
3D images is due to the parallax between the viewer’s two 
eyes. Therefore, traditional  stereo  vision  generation  
requires  at  least  two images with  slightly  different  
projections.  However, most existing digital photos were 
captured from monocular 2D format, and lack the 
corresponding depth maps to generate the perception of 3D 
image. Thus, generating a depth map from a single 
monocular image becomes an important issue for 2D-to-3D 
conversion.  

There are many depth cues are able to be generated 
depth maps, such as relative position [1]-[6], linear 
perspective [1]-[5], atmospheric perspective [6]-[9], and 
texture gradient [7]-[9]. However, using one depth cue is 
not suitable for estimating all types of images. The 
literatures [2][3] classify the images to indoor, outdoor, and 
closed-up images, and then apply the different algorithms 

                                                 
1 This  work  was  supported  by  the  National  Science  Council  
under Grant: NSC100-2221-E-027-080 

for each image type.  In this study, we focus on the outdoor 
image processing. 

Existing 2D-to-3D works are able to estimate 
acceptable depth, but the relative depth between two objects 
is not reasonable. Approaches based on statistical training 
with the ground truth database may approximate to some 
scenarios of images, but it is easy to fail with caveat that it’s 
hard to adopt representative training features without loss of 
generality. 

This study presents an accurate depth map with 
relatively low complexity for real practice. The proposed 
algorithm estimates an initial depth map, and then refines 
the initial depth map by dark channel model to generate a 
final depth map for 2D-to-3D conversion. 

The rest of this paper is organized as follows. Section 2 
describes the proposed algorithm. Section 3 describes the 
simulation model and gives the results. Finally, Section 4 
draws conclusions. 
 

2. PROPOSED ALGORITHM 
 
The proposed algorithm is based on camera projection 
model, object classifier, and dark channel to create the depth 
map, as Fig. 1 shows. This algorithm includes two major 
functions of initial depth creation and final depth generation, 
to estimate the depth map from a single outdoor monocular 
image. Initial depth creation assigns an initial depth map to 
each object based on the image segmentation, the vanishing 
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Fig. 2. Camera projection model 

point detection, and camera projection model. Final depth 
estimation modifies the initial depth map by the dark 
channel information to estimate the output depth map.  
 
2.1 Camera projection model 
 
The purpose of the camera projection model is to estimate 
the reasonable relative depth by the camera parameters from 
the exchangeable image file format (EXIF). A. Matessi et al. 
[10] have proposed a simple model to discuss the 
transformations between the real world and the projection 
plane, as (1) shows. Our proposed algorithm improves this 
model to suit to real applications and correlates it to the 
camera parameters of EXIF, as Fig. 2 shows. 
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where z is the depth value, y notes the vertical position of a 
point in the real world, yp indicates the vertical position of a 
pixel location in the projection plane, f represents the focal 
length of the camera lens. Since the projection plane is 
equivalent to the camera sensor, the vertical range of the 
projection plane is set as the camera sensor size. The lowest 
position of the vertical axis is set to a negative 1.8m if a 
photographer used the handheld camera to take the pictures. 
The depth value is able to be calculated from real world 
parameter and the camera lens parameter by (1). 
 
2.2 Image segmentation and object classification 
 
The object classification cooperates with Camera projection 
model to assign the depth. The stage segments and classifies 
the objects into the sky, ground, man-made, and nature 
objects. The sky objects are assigned the farthest depth; the 
grounds are assigned the relative depth based on the camera 
projection model; the man-made objects are also assigned 
the relative depth based on the camera projection model; the 
nature objects are based on the dark channel. 

P. Felzenszwalb et al. have proposed a graph-based 
image segmentation algorithm [12]. We improve the 
segmentation performance by changing the preprocessing 
filter to bilateral filter [13] instead of Gaussian low-pass 
filter. After processing, the sky objects are classified by the 
color-based rule [2], the ground objects are classified by the 
texture variation, and the man-made and the nature objects 
are categorized by the object contour variation. 

The nature objects have varied object contour. In the 
other word, the contour of the man-made objects usually 
constructs with straight lines. For example, the tree, flower, 
and mountain have few straight lines on their contours. 
Therefore, this algorithm employs the chain code [14] to 
count the corners and straight lines for each object contour. 
According to the ratio of the corners and straight lines, the 
man-made and nature objects are able to be classified.    
 
2.3 Vanishing point detection 
 
The man-made objects can be further classified into the 
single depth and multi-depth objects. All depths of the 
single depth object are assigned a depth value which gets 
from the lowest position of this object, and the multi-depth 
object has the gradient depths which change along with the 
vanishing line. The vanishing line connects the lowest point 
of an object and the vanishing point.  

The vanishing point detection algorithm has been 
proposed by V. Cantoni et al. [15]. We improve the 
preference of the vanishing point detection by combining 
Hough Transform [15] and Random Sample Consensus 
(RANSAC) [16] algorithms. First, our proposed algorithm 
makes the edge map from the man-made objects. Then the 
edge map is transformed to the polar parameter space by 
Hough Transform, and selected the candidate pixels from 
the top group in the polar parameter space. Finally, we use 
RANSAC algorithm to find out a reasonable vanishing 
point.  
 
2.4 Initial depth assignment 
 
Before the initial depth assignment, the objects merging 
process should be performed. The man-made object usually 
is not flying in the air, except airplane. Therefore, the object 
in the air should be merged with the bottom adjacent objects. 
Almost all objects stand on the ground. Thus, the objects 
located above the horizon are defined as in the air. The 
horizon is a horizontal line which the line is tangential to the 
ground contour at the highest vertical point.  

The initial depth assignment is based on the object 
types, and the relative depth is based on the camera 
projection model. First, the sky objects are assigned the 
farthest depth, the ground objects are assigned the relative 
depth which the depths in the object are calculated form (1) 
for each pixel. The depth of the single depth object is set by 
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Fig. 3. Comparison of depth estimation results  

the lowest position of this object. The depth values in multi-
depth object are changed along with the vanishing line.    
 
2.5 Dark channel model 
 
The dark channel model is based on the light intensity 
reflected from the atmospheric haze commonly observed in 
outdoor images [17]. However, this model may contain halo 
effect near the depth discontinuities. S. Fang et al. [11] have 
improved this problem which the algorithm is similar to the 
superpixels [9],[18]. Normally, the nature objects have 
higher saturation values while the man-made objects usually 
are with lower saturation. Thus, the proposed algorithm 
masks the man-made objects, and only applies the dark 
channel model to the nature objects.  
 
2.6 Final depth estimation  
 
Our previous study [6] used the sigmoid function to 
combines the initial depth, saturation, and the dark channel 
to generate the depth map. However, the man-made objects 
usually are lower saturation and lead to the depth estimation 
error, such as road and building. The previous study [6] 
does not classify the nature and the man-made objects, and 
assigns wrong depth to the man-made objects when they are 
located in the middle of an image. 

The object types have been classified in the initial depth 
assignment stage. Thus, the proposed algorithm assigns 
different weights to the initial depth results and the dark 
channel results, and fuses both results by the sigmoid 
function. The key technology for fusing the initial depths 
and the dark channel depth is the unit normalization. We 
assume that the middle distance locates at the same region 
of the initial depth and the dark channel depth. Lastly, the 
final depth is generated by applying the cross bilateral filter 
[3] to the fused depth map.   
 

3. EXPERIMEMTAL RESULTS 
 
The test inputs in this study were taken from Stanford 
University’s 3D image database (Mark3D) [7]-[9], [19]. 
This image database includes a lot of outdoor images and 
provides the corresponding ground truth depth maps. The 
resolution of the outdoor images is 1704x2274. The ground 
truth depth maps are acquired by a laser distance scanner. 
The gray values of the ground truth ranging are from 1-81 
with a resolution of 305x55. All outdoor images have been 
divided into two sets, learning set and test set. The learning 
set includes 400 outdoor images, and the test set includes 
134 images. Our test-bed was implemented in C and run on 
a PC with Intel  CoreTM i5-2400 3.1GHz CPU and 2GBytes 
ram. 

Figure 3 presents the visual performance of four test 
images as examples. Fig. 3(c) shows the depth maps by 
Saxena’s algorithm, in which the object boundary is 
indistinct; the depth assignment to ground objects is almost 

the same; and the depth on the building area is almost 
wrong. Those problems could negatively affect the stereo 
vision quality after 2D-to-3D conversion. In contrast, Fig. 
3(d) shows that our proposed algorithm provides a better 
depth map with sharper object shapes and better gradient 
effect. Some estimated depth given by our algorithm is even 
better than the ground truth if the object is located in the 
farther distance. The reason is that the farther distance areas 
are out of the working range of the laser distance scanner.  

The proposed algorithm is much faster than Saxena’s 
method. Although, Saxena’s algorithm is wrote by the 
Matlab and C language, the proposed algorithm is a great 
speed up, above fourteen times.   

This study also collects and tests images from handheld 
cameras as our next test set, named group 2 test. Figure 4 
presents the visual performance of four test images as 
examples. The scenario in the group 2 is different from 
Stanford University’s 3D image database, which include the 
ocean, bridge, and mountain. These estimated depth maps 
using Saxena’s algorithm show obvious performance 
difference between Fig. 3 and Fig 4. The performance of 
Fig. 4(b) becomes worse than Fig. 3(c) in Saxena’s method. 
Figure 4(c) shows that the proposed method provides much 
sharper depth on the boundaries of the tree, mountain, and 
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Fig. 4. Depth estimation result comparison 

bridge than Saxena’s results, as Fig. 4(b) shows. Thus, 
Saxena’s algorithm is only workable in the similar image 
composition as training database. On the other hand, the 
depth maps of Fig. 4(c) are assigned appropriate depth 
values from near end to far end, and display a clear shape 
for each object. In addition, the proposed method recognizes 
and assigns the gradient depth value to the multi-depth 
object, such as bridge in the Fig. 4(c).  However, Saxena’s 
algorithm assigns inaccurate depth to this kind of object, as 
the bridge is cont considered in training database.  
 

4. CONCLUSION 
 
The ground truth depth map can be obtained from the laser 
scanners, and the disparity map. However, the resolution of 
laser scanners is lower than the associated 2D image [20] 
and the disparity map is also affected by different 
algorithms. Therefore, 2D-to-3D conversion has become a 
mathematically ill-posed problem which admits an infinite 
number of solutions since true depth information of the 
scene are unknown [21].  In this study, we employ camera 
projection model to estimate a reasonable relative depth by 
the camera parameters from EXIF, and generate the final 
output depth from the initial depth results and the dark 
channel model results. The experimental results show the 
proposed algorithm is better than Saxena’s. The proposed 
algorithm is also with much lower complexity than Saxena’s. 
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