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ABSTRACT

In this paper, we proposed a novel semi-automatic 2D-to-3D video
conversion method. Our method requires just a few user-scribbles
to generate depth maps for key frames and propagates these depth
maps to non-key frames automatically. For key frames, foreground
objects and the corresponding depth maps can be obtained by an in-
teractive method. Then, both forward and backward motion vectors
are estimated and compared to decide the depth propagation strategy.
For pixels that failed the motion vectors comparison, a compensation
process is adopted to refine their depth propagation results. Finally,
stereoscopic pairs are generated by the warping method based on the
original frames and associated depth maps. Our method is validated
by both subjective and objective quality assessments. The experi-
mental results show that our method outperforms several state-of-
the-art 2D-to-3D video conversion methods.

Index Terms— Stereo vision, 2D-to-3D conversion, depth
propagation, motion estimation

1. INTRODUCTION

3D (mostly stereoscopic) video enhances traditional viewing expe-
rience dramatically by providing an immersive perception. As 3D
videos become more and more popular, 3D content seems to be quite
insufficient compared with the growing number of 3D display de-
vices. The 3D content shortage has limited the development and
promotion of 3D technology. Considering the huge amount of exist-
ing 2D videos, 2D-to-3D video conversion is expected to satisfy the
growing need for high quality 3D videos and attracts attention from
both industrial and academic communities [1].

According to whether human-computer interactions are in-
volved, 2D-to-3D video conversion methods can be divided into two
categories: fully-automatic methods and semi-automatic methods.

Fully-automatic methods Fully-automatic methods can gen-
erate 3D videos directly from 2D inputs without any human-
computer interactions. Structure from motion (SfM) methods [2]
are widely studied in computer vision area and able to recover 3D
structure of the scene automatically. Zhang et al.[3] employed the
SfM method to recover consistent video depth maps via bundle
optimization. In [4], Knorr et al.proposed a modular system that is
capable of efficiently reconstructing 3D scenes from broadcasting
video. However, SfM methods have certain restrictions on camera
movement and scene motion, which reduces the extensive availabil-
ity of these methods. Recently, Zhang et al.[5] integrated visual
attention and occlusion analysis to calculate depth map. Compared
with the SfM-based methods, [5] extracts monocular depth cues
from the scene and poses no limitation on the underlying 2D video.

Semi-automatic methods By introducing human-computer
interactions, semi-automatic methods can balance quality and cost
more flexibly than fully-automatic methods. Stereo quality and

conversion cost are determined by the key frame intervals and the
accuracy of depth maps on key frames. Smaller interval and more
accurate depth map will improve the stereo quality, but increase the
conversion cost as well. Therefore, a tradeoff has to be made in
order to obtain satisfactory quality at acceptable cost. Guttmann
et al.[6] presented a semi-automatic system which just requires
user-scribbles on the first and last frames of the video clip for the
purpose of reducing manual labor. Their system employs the SVM
classifier trained on the marked frames to produce disparity maps
for the entire video clip through an optimization process. Yan et
al.[7] demonstrated a depth map generation scheme based on user
inputs and depth propagation. They specify the depth values of the
selected pixels and locate the approximate positions of T-junctions
by user inputs, and then generate depth maps by depth propagation
combining user inputs, color and edge information.

Another method was proposed by Varekamp and Barenbrug [8],
which used bilateral filtering algorithm to produce a per-pixel depth
estimation and correct the estimation through a block-based motion
compensation procedure. Recently, Cao et al.[9] proposed a semi-
automatic conversion method that adopted a multiple objects seg-
mentation algorithm to create disparity maps for key frames and then
employed the shifted bilateral filtering algorithm to propagate dis-
parities to non-key frames.

For the purpose of producing high-quality and cost-effective 3D
videos, we propose a semi-automatic conversion method which re-
quires only a few user instructions on key frames and propagates the
depth maps to non-key frames via bi-directional motion estimation
automatically. In our method, object edges in depth maps are prop-
agated by taking both color and motion information into consider-
ation. This operation is based on the observation that the regions
where depth changes dramatically (often happens at edges) play as a
key factor when viewing 3D video. The experimental results demon-
strate that our approach has better performance both in subjective test
and objective quality assessment algorithms.

The paper is organized as follows. In section 2, we describe the
proposed method; In section 3, experimental results are presented;
At last, conclusions are drawn in section 4 and future work is also
discussed in that section.

2. THE PROPOSED METHOD

The proposed 2D-to-3D conversion method includes two major
stages: key frame depth generation stage which requires human-
computer interactions, and non-key frame depth propagation stage
which is performed automatically. Key frame depth generation
stage extracts foreground object and assigns depth values to both
foreground object and background. When key frame depth maps are
created, bi-directional motion vectors are estimated and compared
to decide the appropriate depth propagation strategy, followed by a
compensation process to refine the propagation results. Finally, a
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stereoscopic video is synthesized through the warping method [10]
using the original frames and their associated depth maps as input.

2.1. Key frame depth generation

Key frame depth generation stage is the only part that involves user
instructions in our semi-automatic 2D-to-3D conversion method.
This stage starts with a foreground object extraction operation and
ends with a depth assignment process.

Scribble-based object extraction methods were made popular by
Boykov and Jolly [11], and adopted by 2D-to-3D conversion meth-
ods recently [9][12]. In order to achieve realtime feedback on the ex-
traction results, we perform pre-segmentation operations first. The
pre-segmentation operations aim at aggregating similar pixels into
regions so as to reduce computational cost and human-computer in-
teraction lag. Existing semi-automatic conversion methods [9][12]
employed the watershed algorithm to pre-segment the key frames.
However, the watershed algorithm has several major drawbacks:

1. The watershed algorithm is susceptible to image noise.

2. The watershed algorithm often causes the over-segmentation
problem that generates lots of tiny regions.

3. The watershed algorithm has some difficulties in finding cor-
rect object edges when the image contrast is low.

To overcome these drawbacks, we employ the K-means over-
segmentation algorithm used in [7] as the pre-segmentation algo-
rithm. The basic idea of this algorithm is to utilize the K-means
algorithm to create the cluster results at first, and then convert the
cluster results into connected regions through the connected domain
algorithm, followed by a post-processing step to ensure its effective-
ness. The advantage of the K-means over-segmentation algorithm
is that there are no significant differences in size and shape between
the pre-segmented regions.

When pre-segmentation operations are completed, we need to
manually mark scribbles on the key frames to indicate foreground
object and background. We can denote the regions that indicated to
be foreground object as F , regions that indicated to be background
as B and unmarked regions as U . Then, foreground object can be
extracted by minimizing the energy function below [13].

E(L) =
∑
p

Dp(Lp) +
∑
p,q

Vpq(Lp, Lq) (1)

where Lp is the label (foreground or background) of pixel p and
L = {Lp} is a labeling of the whole image. Dp is a data penalty
function while Vpq is the interaction potential between pixel p and q.

This energy function can be optimized by the max-flow/min-
cut algorithm [13], which perceives the image as a graph with fore-
ground and background terminals and formulates the optimization
problem into finding a cut with minimum cost on the graph that par-
titions the regions into foreground and background. The cost (i.e.
weight) of each edge in the connected regions map is defined ac-
cording to the Euclidean distance in the RGB color space.

For edges that connect adjacent regions:

Wij =
1

‖Ci − Cj‖+ ‖Pi − Pj‖ (2)

For edges that connect region i to foreground or background⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

WiF = 1 +
∑
j

Wij WiB = 0 ∀i ∈ F

WiF = 0 WiB = 1 +
∑
j

Wij ∀i ∈ B

WiF = 1/min
f

(‖Ci − Cf‖+ ‖Pi − Pf‖) ∀i ∈ U
WiB = 1/min

b
(‖Ci − Cb‖+ ‖Pi − Pb‖)

(3)

Fig. 1. The pipeline of non-key frame depth propagation stage.

In equations above, Ci and Pi are the average color and posi-
tion of region i. Wij is the edge weight between region i and j.
Cf and Pf are the average color and position of region f that is in-
dicated as foreground F while Cb and Pb are defined accordingly.
WiF and WiB are the edge weights connecting region i to fore-
ground/background.

After the edge weights are defined, foreground object can be
extracted by the max-flow/min-cut algorithm. Then, key frame depth
map is generated through a depth assignment process. This process
is executed separably on foreground object and background. We can
choose to assign depth via the stroke-based methods [6][7] or the
model-based methods [9]. At last, depth maps of foreground object
and background are combined to form a key frame depth map.

2.2. Non-key frame depth propagation

Non-key frame depth propagation stage is designed to create depth
maps for non-key frames and does not require any user-instruction.
Here, we proposed a depth propagation scheme that involves bi-
directional motion estimation (i.e. forward and backward motion
estimation) to decide the appropriate propagation strategy. Then,
depth maps created by different propagation strategies are merged,
and corrected by a mismatch compensation method to improve ac-
curacy, as shown in Fig. 1.

In the bi-directional motion estimation step, we introduce the
variable block-size motion estimation algorithm used in H.264 stan-
dard. Considering two successive frames t and t + 1, the forward
motion vectors are obtained by setting frame t as reference frame
and calculating the motion vectors from frame t to frame t+1 using
the algorithm mentioned above while the backward motion vectors
are obtained in a reverse way.

When both forward and backward motion vectors are obtained,
we need to check whether the two kinds of motion vectors match
with each other. We define a mask mask(t)(x) to represent the
match checking results at pixel x on frame t, where 1 means we
find a match and 0 means no match. All masks should be set to 0
first and calculated as follows:

v = u+ FMV (t)(u) (4)

m = v +BMV (t+1)(v) (5)

mask(t+1)(v) = 1 if ‖m− u‖ ≤ ξ (6)

where u is a pixel on frame t and v is an estimation of u tracked to
frame t + 1 considering the forward motion vector FMV . m is
the estimation of v tracked back to frame t based on the backward
motion vector BMV . ξ is a pre-determined parameter to control
the matching threshold.
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(a) (b)

Fig. 2. Depth maps merging: (a) Depth copy result with undefined
’holes’. (b) ’Holes’ filled by merging with bilateral filtering result.

The basic idea of this matching principle is like this: a pixel u
is tracked to the next frame at pixel v using the forward motion vec-
tor and then tracked back to the original frame at pixel m using the
backward motion vector. If the tracked back pixel m is in the neigh-
borhood of the original pixel u, we can conclude that the forward
and backward motion vectors form a good match, indicating the mo-
tion estimation results are reliable. Therefore, pixel u and pixel v are
essentially the same pixels only to be presented on different frames
and the estimated motion vectors constitute the connection between
these two pixels. Besides, these two pixels should have the same
depth value since they are actually the same. We can directly copy
the depth of pixel u on the original frame to pixel v on the next frame
if these pixels are ’connected’ by motion vectors.

Because the pixels on two successive frames do not have a one-
to-one correspondence and not all estimated motion vectors are able
to form a reliable match, there may exist some undefined ’holes’ in
the depth map generated by the depth copy method. To fill up these
’holes’, we employ the bilateral filtering algorithm proposed in [8]:

D(t+1)(i) =

∑

j
f(i,j)w(t+1,t)(i,j)D(t)(j)

∑

j
f(i,j)w(t+1,t)(i,j)

if mask(t+1)(i) = 0

(7)
where D(t+1)(i) is the depth of pixel i on frame t + 1 that needs

to be calculated and D(t)(j) is the known depth of pixel j on frame
t. The spatial weighting function f(i, j) and the color difference

weighting function w(t+1,t)(i, j) are defined as follows:

f(i, j) =

{
1 if ‖i− j‖ ≤ Δ
0 otherwise

(8)

w(t+1,t)(i, j) = e
− ‖C(i)−C(j)‖2

2σ2 (9)

where Δ is the filter window size and σ is the parameter that deter-
mines color importance. C(i) and C(j) are the color values of pixel
i on frame t+ 1 and pixel j on frame t.

It needs to be pointed out that Equation (7) is only applied to
the pixels whose forward and backward motion vectors fail to match
with each other. For the pixels whose motion vectors are match-
ing, the depth copy method is sufficient to provide satisfactory depth
propagation results. The reason we use the bilateral filtering algo-
rithm is to fill up the undefined ’holes’, as shown in Fig. 2. Once
matching results are obtained, the depth copy method and the bilat-
eral filtering algorithm can be executed in parallel. Then, depth maps
generated by these two methods can be merged to form a complete
depth map.

However, the bilateral filtering algorithm may cause several
problems in depth maps [8] and a compensation procedure is needed
to correct the depth errors. The compensation procedure helps to

(a) (b)

Fig. 3. Mismatch compensation: (a) Depth maps merging result
without compensation. (b) Mismatch compensation result.

correct blended depth values and refine blurred edges in depth maps.
Since these errors are mainly caused by the mismatched pixels pro-
cessed by the bilateral filtering algorithm, pixels that have been
handled by the depth copy method will not be compensated. Here,
we propose a mismatch compensation method based on the same
variable block-size motion estimation algorithm used in H.264 stan-
dard with a modification of its cost function, which takes both color
information and depth values into account.

In our proposed mismatch compensation method, we add the
weighted depth differences between depth map of previous frame
and depth merging result of current frame to the cost function. Now
the cost function consists of color space differences and depth dif-
ferences. By changing the weight of depth differences, we are able
to control the compensation procedure more flexibly. Finally, depth
of the pixels on the current frame that needs to be compensated can
be corrected by copying the depth of their matching pixels on the
previous frame, where the correct matching (i.e. with the smallest
matching error) is decided by the new cost function. Fig. 3 illus-
trates the effect of mismatch compensation.

Moreover, we adopt a bi-directional depth propagation scheme
considering the camera zoom in/out effect and the fact that depth of
the object may vary due to the object’s motion. The depth map of
each non-key frame is created by combining the depth maps propa-
gated from two adjacent key frames, as demonstrated in [12].

Once all depth maps are generated, virtual views can be syn-
thesized through a warping process [10] according to the type of
3D display devices . After that, we integrate these views to form a
stereoscopic video that is compatible with the selected 3D display
devices.

3. EXPERIMENTAL RESULTS

In this section, both subjective and objective quality assessments are
carried out in order to compare our method with several state-of-the-
art 2D-to-3D video conversion methods, including: 1) the bilateral
filtering algorithm; 2) Philip’s improved depth propagation method
[8]; 3) Cao’s method proposed in [9][14].

The test set consists of 10 different sequences. Sequence 1–8
are collected from the Philips WowVx c© project website. Sequence
9 ”Interview” is published by Heinrich-Hertz-Institut and sequence
10 ”InnerGate” is made by ourselves using the computer graphics
method. These sequences have challenging factors such as sharp
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No. Bilateral
filtering

Philip’s
method [8]

Cao’s
method [9]

Our
method

1 42.59 40.91 47.46 16.89
2 7.76 7.55 8.51 5.51
3 87.13 94.83 40.04 41.98

4 607.15 548.94 245.50 190.77
5 131.40 124.75 249.98 86.97
6 71.18 70.01 191.53 69.25
7 85.70 79.78 40.58 19.27
8 387.67 360.47 227.29 105.81
9 112.32 98.93 68.23 45.03

10 497.47 529.96 400.77 156.41

Table 1. Mean Squared Error (MSE) comparison results.

No. Bilateral
filtering

Philip’s
method [8]

Cao’s
method [9]

Our
method

1 36.58 38.87 35.21 34.14
2 40.56 38.00 17.46 7.05
3 35.32 41.37 42.85 31.99
4 28.95 39.39 38.12 26.85
5 45.22 41.80 43.32 41.56
6 44.69 40.39 41.84 40.46

7 39.46 32.57 35.28 17.95
8 19.71 20.08 26.15 20.83

9 31.48 21.94 22.19 18.14
10 31.86 36.75 33.54 29.72

Avg. 35.38 35.13 33.60 26.87

Table 2. Blind Image Quality Index (BIQI) comparison results.

edges, texture-less regions, color ambiguity and large displacement
objects. The key frame interval is set to 20 to 30 frames accord-
ing to different sequences. Details about the test sequences and the
experimental results can be found on our website1.

3.1. Objective assessment

Mean Squared Error (MSE) is widely used as a full-reference image
quality assessment metric. In the objective assessment part, we em-
ploy the MSE metric to measure the differences between the prop-
agated depth maps and the ground truth. Table 1 shows the MSE
comparison results. We can see that our method gives the best per-
formance in most sequences except sequence 3, in which our method
finishes runner-up with a very close result.

Besides, we employ a no-reference objective assessment metric
called Blind Image Quality Index (BIQI) [15] as well. BIQI gener-
ates a quality score between 0 and 100 for each depth map, where
0 represents the best quality and 100 the worst. Table 2 gives the
BIQI comparison results. Similar with the MSE results, our method
has the best scores in eight out of ten sequences. The average scores
show that this advantage is quite obvious.

3.2. Subjective assessment

In addition to the objective assessment, a user survey is conducted on
the same test set. We invited 16 viewers to watch the 3D video clips
on a 3D shutter display and then rate these video clips according
to their 3D performances. We put the ground truth results together
with the video clips that were converted by the methods mentioned
above. Table 3 presents the user survey results. We can see that the
ground truth is in the lead, of course, but our method outperforms

1http://media.au.tsinghua.edu.cn/2Dto3D/evaluation.html

Methods First choice Second choice

Bilateral filtering 8.8% 13.7%

Philip’s method [8] 7.5% 15.6%

Cao’s method [9] 10.0% 16.3%

Our method 33.1% 28.1%

Ground Truth 40.6% 26.3%

Table 3. Subjective assessment results.

the other methods and ranks second in the survey, which verifies the
effectiveness of our method.

4. CONCLUSION

We have introduced a novel semi-automatic 2D-to-3D video con-
version method for the purpose of converting existing 2D videos
efficiently. With the help of bi-directional motion estimation, we
are able to produce high-quality depth maps with limited human-
machine interactions. The experimental results show that our
method has better performance than several state-of-the-art 2D-
to-3D conversion methods. In the future, we plan to adopt the image
matting methods to generate better segmentation results and more
accurate depth maps for key frames.
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