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ABSTRACT

We present a nonparametric and efficient method for shape lo-

calization that improves on the traditional sub-window search

in capturing the fine geometry of an object from a small num-

ber of feature points. Our method implies that the discrete set

of features capture more appearance and shape information

than is commonly exploited. We use the α-complex by Edels-

brunner et al. to build a filtration of simplicial complexes

from a user-provided set of features. The optimal value of α
is determined automatically by a search for the densest com-

plex connected component, resulting in a parameter-free algo-

rithm. Given K features, localization occurs in O(K logK)
time. For VGA-resolution images, computation takes typical-

ly less than 10 milliseconds. We use our method for interac-

tive object cut, with promising results.

Index Terms— alpha shapes, object segmentation

1. INTRODUCTION

We present a method to find the detailed shape of an object

of interest from a small number of feature points. These can

come from user input – as in our experiments – or from the

output of a trained classifier. In this paper, we assume each

feature comes with its 2D location and a score that measures

how likely it belongs to some object of interest.

1.1. Literature Review

Bag-of-feature models [1, 2, 3, 4] have been quite successful

in tasks ranging from image matching [5] and object tracking

[6, 7] to object recognition [1, 3].

Each feature receives a score – positive or negative – of

the likelihood that a given feature belongs to the object of in-

terest. Crucially, high positive feature scores tend to occur

within an object, so the region that maximizes the sum of s-

cores tallied in its interior is likely to correspond closely to

the location of the object.

Typical methods [8, 9, 7] employ an axis-aligned rectan-

gular window to cover the region of interest. However, rect-

angular windows only localize objects coarsely and may not

work well for non-rectangular objects (Figure 2).

Fig. 1. The shape of a Henry Moore sculpture automatically

localized from the red and blue dots in less than 0.01s, and

with no parameters. Image from the Wikimedia Commons.

1.2. Our Contributions

In contrast, we search over a one-parameter family of shapes

derived from the so-called α-complex [10]. On one hand, this

family allows general shapes, with possibly even holes. On

the other hand, 2D alpha complexes can be enumerated quick-

ly in O(K logK) time for K points. This winning combina-

tion suggests that point features – together with their scores

– encode more geometric information than is customarily ex-

ploited in the literature.

Fig. 2. Subwindow search (green rectangles) cannot localize

shape in detail. Our method does better (red regions) given

features are well distributed (red and blue dots on the right).
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1.3. Paper Organization

Section 2 reviews the construct of α-complexes. Section

3 presents an optimization procedure in the space of α-

complexes. Section 4 describes a simple, efficient, and easy

to implement algorithm for shape from point features. Section

5 shows experiments, and Section 6 concludes.

2. ALPHA COMPONENTS

Let Γ ⊂ R
2 be a set of discrete, isolated points on the plane.

The Delaunay triangulation Del(Γ) of Γ is a simplicial com-
plex whose boundary is the convex hull of Γ. What makes

Del(Γ) a simplicial complex is that it is composed of sim-

plices – points, edges and triangles – that are glued together

appropriately: If an edge is in Del(Γ), so are its endpoints;

if a triangle is in Del(Γ), so are its edges. Conversely, if t-

wo triangles in the complex share an edge, that edge is in the

complex, and if two edges in the complex meet at an endpoint,

that endpoint is in the complex.

The α-complex Aα(Γ) is a one-parameter simplicial com-

plex that lies between the discrete point set itself (which is a

simplicial complex!) and the Delaunay triangulation:

Γ ⊆ Aα(Γ) ⊆ Del(Γ)

That is, by varying α from 0 to +∞, the α-complex Aα(Γ)
grows from a discrete point set to its Delaunay triangulation.

In this process, the α-complex Aα(Γ) can take on fairly gen-

eral shapes that can be convex, concave, or even with holes.

Specifically, given a fixed α, Aα(Γ) is constructed by retain-

ing all the points, plus the Delaunay edges of length up to α.

If the three edges of a triangle are in Aα(Γ), we also add the

triangle to the complex.

Let Bα(x) = {y | ‖x − y‖ ≤ α} be a disk of radius α
centered at x. Then, it is known that:

⋃
x∈Γ

Bα(x)

is homotopy-equivalent to Aα(Γ), meaning that the union of

disks can be transformed to the α-complex by a deformation

that preserves the topology. See Figure 3 for an illustration.

The family of α-complexes forms a nested set sequence

called mathematical filtration. That is, for 0 < α1 < α2 <
· · · < αn < +∞, we have:

Aα1
(Γ) ⊆ Aα2

(Γ) ⊆ · · · ⊆ Aαn
(Γ) (1)

This nesting leads to a way to enumerate all the elements of

the entire complex quickly, as we will see in Section 4.

An α-complex is not necessarily connected (See Figure

3). In our application, shapes are assumed to be connected,

so we define the family S(Γ) of shapes that we consider for

a particular input feature set Γ to be the set of all connected

components of the α-complex Aα(Γ), for α ranging from 0 to

+∞. Each member of this family is called an α-component.

Fig. 3. The union of disks on the left is homotopy-equivalent

to the α-complex on the right, which is composed of points,

edges and triangles. This complex has a hole.

3. SHAPE FROM POINT FEATURES

The key idea is: instead of thinking that a shape encloses a

feature, we envision the set of features as “generating” the

shape. In this spirit, let f : Γ → R be a score function, and

let Γ+ be the set of features with positive score. Furthermore,

for any α-component W in the family S(Γ+) generated by

Γ+, let τ(W ) be the minimal edge length that unites W into a

single connected component. In other words, removing edges

that are at least τ(W ) long would break the component, but

removing edges that are strictly longer than τ(W ) would not.

With these definitions, we formulate the problem:

Definition 1. (Shape from Features.) The shape induced by
feature set Γ and score function f : Γ→ R is:

Ŵ = arg max
W∈S(Γ+)

∑
x∈W∩Γ f(x)

τ(W )︸ ︷︷ ︸
ρ(W )

(2)

where ρ(W ) is the density of α-component W , if W contains
at least one edge. If W is a single point, define ρ(W ) = 0.
W ∩Γ is the set of features living within the α-component W .

Note that the α-components are generated from Γ+, but

the density includes all features in W ∩ Γ, regardless of the

sign of their scores. In other words, features of positive scores

generate a shape that is indirectly bounded by the presence of

features of negative scores.

The denominator in the definition of ρ(W ) is a measure of

the size of the α-component W , so that ρ(W ) can be viewed

as evidence of “objectness” per unit size. Ideally, size should

be measured by a function of the area of W , but this would

lead to an intractable problem. We found τ(W ) to be an ade-

quate proxy.

4. THE ALGORITHM

Algorithm 1 outlines our method for finding the optimal shape

from a feature set Γ with given score function f . Since α-

complexes form a filtration, they can be built up in order of
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increasing value of α, and the separate α components can be

maintained in a union-find data structure. Initially, each fea-

ture is a separate α-component. At each step of the construc-

tion, the density of the current α-component is updated. The

notation d(e) in Algorithm 1 denotes the length of edge e, and

s(Δ) represents the sum of all scores in triangle Δ.

One of two cases arises when a new edge e is inserted. If e
connects two previously distinct components, the score sum-

mation and the density are updated for the new component.

On the other hand, if e joins vertices that already belong to

the same component, we check if one or two triangles need

to be added to the component (an edge in a simplicial com-

plex can belong to zero, one, or two triangles). If triangles are

added, we update the score summation and the density value

accordingly.

Algorithm 1 Compute the densest α-component for feature

set Γ and score function f .

1: Compute the Delaunay triangulation of Γ+;

2: Put all Delaunay edges into priority queue E ordered by

increasing lengths;

3: For each feature i, set score s[i] ← f(i) and density

ρ[i]← 0;

4: Set ρmax ← 0;

5: while E is not empty do
6: Remove the shortest e from E and let i, j be the com-

ponent IDs of its two endpoints;

7: if i 
= j then
8: Merge i and j into component i in the union-find

structure;

9: Update: s[i]← s[i]+s[j]; ρ[i]← s[i]/d(e); ρmax =
max{ρmax, ρ[i]};

10: else
11: for any triangle Δ closed by e whose edges are all

in component i do
12: Update: s[i]← s[i] + s(Δ) and ρ[i]← s[i]/d(e);

ρmax = max{ρmax, ρ[i]};
13: end for
14: end if
15: end while

4.1. Analysis

Once the algorithm has found the best density measure, the

corresponding alpha component can be found by running

the algorithm again and returning the alpha component that

achieves the best density measure. Computing the 2D De-

launay triangulation and the score summation within each

triangle takes time O(K logK). Sorting the Delaunay edges

takes O(K logK) time because the Delaunay triangulation

is a planar graph and the number of its edges is less than

3K − 6. The time complexity for union-find on K points is

O(Kα(K)) where α(K) is the inverse Ackermann function.

Fig. 4. From left to right: The user input seeds, the features

classified as positive (red) or negative (blue), and the segment-

ed object with background removed. The entire computation

takes less than 0.01 seconds on a quad-core laptop.

So the overall complexity of finding the optimal α-component

is O(K logK) for a set Γ of K features.

5. DEMONSTRATIONS ON OBJECT CUT

We apply our method to segmenting an object out of a col-

or image. Similarly to GrabCut [11], we require the user to

somehow indicate what is inside and outside the desired ob-

ject. In our case, all that is required is a small set of points in

each set. In our experiments, we mark 20 points in the object

and 20 points outside. Compared to GrabCut, input for our

method is much easier for the user to specify, and computa-

tion is much faster. Moreover, holes are allowed.

Let I be the given color image. We describe feature points

by their R,G,B values. Let O be the set of input object color

vectors and B be the set of background color vectors. We first

classify each remaining image pixel into object, background,

or neither by nearest neighbor: For each pixel p with 3D color

vector u, we compute the ratio:

ζ =
minv∈B ‖u− v‖
minv∈O ‖u− v‖

We let f(p) = 1 if ζ > 3/2 and f(p) = −1 if ζ < 2/3.

Otherwise, f(p) = 0. Pixels with positive scores are treat-

ed as positive features Γ+. We then apply Equation (2) to

find the best α-component using Algorithm 1. Since both

the object and background contain only a few user select-

ed features, computing the low dimensional nearest neighbor

queries takes practically linear time with respect to the num-

ber of image pixels. Figure 4 illustrates the process, and Fig-

ures 5 and 6 show results. All images are chosen from the

PASCAL data set [12].

5.1. Performance and Reproducibility

Our method for shape from features takes less than 0.01 sec-

onds to find the optimal shape for an image of size 400×600.

To the best of our knowledge, this is the fastest shape lo-

calization algorithm in the literature and is suitable for re-

al time applications. The MATLAB and C++ code which

implement the algorithm is available at http://www.cs.
duke.edu/˜steve/shape_from_features.html
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Fig. 5. Each column shows the user input, the features clas-

sified as positive or negative, and the segmented object. No

preprocessing (e.g., smooth) or postprocessing (e.g., hole fill-

ing) are applied. Best viewed when enlarged.

6. CONCLUSIONS

We present a nonparametric and efficient method for ex-

tracting flexible shapes from features in practically real time.

Results on interactive object are very encouraging. We expect

our method to be useful in other applications like supervised

object detection, tracking, and computer graphics.
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