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ABSTRACT

In object detection, the offline trained detector’s performance

may be degraded in a particular deployed environment, be-

cause of the large variation of different environments. In

this work, we propose a data level object detector adaptation

method to new environments. By recording a small amount of

offline data, it’s fully compatible with offline training method

and easy to implement. We re-derive an efficient MILBoost

by eliminating line search in optimization and introduce it to

collect online multiple instance samples, which don’t require

strict sample alignment. Experiment results with the human

detector on public datasets illustrate the effectiveness of the

proposed adaptation method. The adapted detector has good

adaptation ability, while maintaining its generalization ability

as well.

Index Terms— detector adaptation, multiple instance

samples, MILBoost, object detection

1. INTRODUCTION

In object (e.g. faces, humans) detection, learning based meth-

ods have demonstrated good performance. Typically, a de-

tector is trained in offline with labeled training samples and

some learning algorithm (e.g. AdaBoost). The performance

of the detector depends largely on the representativeness of

the training samples. Though increasing the training set can

make it more representative, it’s impossible to collect all the

test data encountered in the deployed environment, since the

training and test data often have disparities due to different

viewpoints or scenes. Retraining the detector by adding sam-

ples in the test data is also infeasible, as the offline training is

time-consuming with several hours or days.

To solve the above problem, online adaptation of offline

trained generic detector to the test scenes is a good choice.

There are two main challenges in the detector adaptation. The

first is the effectiveness of the adaptation method. The adapt-

ed detector should not only have good adaptation ability on

the new environment for a better performance, but also main-

tain the generalization ability to avoid over adaptation. Over

adaptation makes the detector become worse for the possible

changes of the new scene (such as entering of a car). Many

online learning methods are proposed for detection or track-

ing. Online boosting is applied in [1, 2] for online feature

selection on a group of selectors. Gradient-based feature s-

election approach [3] is proposed to update the weak classi-

fiers using gradient descent. These approaches don’t consider

the offline data in feature updating, so they may cause over

adaptation. Realizing this, Zhang et al. [4] use Taylor ex-

pansion to parameterize the loss function for offline data, so

the weights of weak classifiers learned with DiscreteBoost is

adjusted with both offline and online data. The method has

good performance on their human dataset, but extending it to

other boosting method is not straightforward, which limits its

application.

The second challenge is adaptation efficiency. Fast and

easy adaptation without much human labor is a desirable

property for deploying the detector to a new environment.

The most cumbersome part is the sample collection. In offline

training, positive samples are labeled and aligned carefully

and costly. While in the online case, such expensive labeling

is infeasible for the end user, so online labeling should be

minimal. Many methods [5, 6] utilize co-training to select

samples in an semi-supervised way. Detected objects of one

detector are used to update the other detector. This requires

availability of two independent detectors with different visual

cues. Also, it doesn’t solve the online sample misalignment.

Viola et al. [7] proposes MILBoost which doesn’t require

strict alignment by collecting multiple instances around a la-

beled sample. But the complexity is increased with the large

number of instances.

In this paper, we present an effective and efficient detector

adaptation method. The main contribution is two-fold. Firstly

for effectiveness, we propose a data level detector adaptation

method. A small amount of offline data is recorded and used

in the online adaptation to prevent over adaptation. The on-

line adaptation is fully compatible with the offline training

and widely applicable to the boosting based method. Sec-

ondly for efficiency, we re-derive MILBoost under Gradient-

Boost [8] framework to eliminate the slow line search in opti-

mization. Besides, by firstly introducing MILBoost into adap-

tation, multiple instance samples can be collected and pruned

with the offline detector itself, instead of two independent de-

tectors in co-training. The end user only needs to remove
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some false positives, so the manual labeling is easy without

strict alignment.

The rest of the paper is organized as follows. Section 2

presents our detector adaptation method. Section 3 covers the

online multiple instance samples with improved MILBoost.

Experiment results is given in Section 4 and the paper is con-

cluded in Section 5.

2. DATA LEVEL DETECTOR ADAPTATION

The Viola-Jones detector [9] is a seminal framework for many

object detectors, including our human detector [10], which

consists of cascaded strong classifiers. The strong classifier

Cl(x) (l is stage index in the cascade, we will omit it for

convenience) has the format

C(x) = sign [H(x)] = sign

[
T∑

t=1

ht(x)− b

]
(1)

where h(x) is the weak learner and b is the threshold. H(x)
is learned with some boosting algorithm (such as Real-

Boost, GentleBoost [11] or GradientBoost [8]) by min-

imizing the cost L(H(x),X ) over the training set X =
{(x1, y1), ..., (xN , yN )}, xn ∈ R

D, yn ∈ {−1,+1}. Weak

learner h(x) can be denoted in detail as h(f(x), a) where

f(x) is the feature vector and a is the weak learner’s pa-

rameter. For example, in decision stump based weak learn-

er [9, 10], f(x) is a scalar feature and a is the regression

values of the stump. In SVM based weak learner [12], f(x)
is a 36D feature vector and a is the SVM coefficients. In of-

fline boosting round t, the optimal weak learner ht(f(x), a)is
learned by selecting the best feature f(x) from feature set Ft

and the parameter a on the data X .

Online adaptation can be achieved by adjusting f(x) or

a. But the adaptation should be very careful in order not to

damage the offline detector’s generalization ability. In [1, 2,

3], the feature f(x) is changed to a new one with only online

data. The new feature may be only discriminative for online

data and the detector has high risk to be over-adapted.

In our adaptation method, we don’t change the feature

f(x) as it’s selected in offline with huge training data. Main-

taining the features help to keep the detector’s generalization

ability. Also, we use both offline and online data in the adap-

tation to further prevent over adaptation. The proposed data

level adaptation method records f(x)’s value of all the of-

fline samples. The online adaptation has the identical rou-

tine with offline training, except the feature selection is re-

moved. In online boosting round t, the optimal weak learner

ht(f(x), a
′) is learned by obtaining the new parameter a′ on

both the online data Xonline and recorded offline feature data

{ft(x), x ∈ Xoffline}. The recorded offline data is smal-

l. Take our offline human detector [10] as an example. It

has about 1,000 scalar features, which is trained with 10,000

samples. The total data needed to record is about 38M.

The proposed method has four advantages. Firstly, offline

selected discriminative features are kept unchanged and the

feature data of all offline samples is used in adaptation, so the

risk of over adaptation is greatly reduced. Secondly, it’s high-

ly compatible with the offline training method, so it’s widely

applicable to many existing offline methods and easy to im-

plement. Thirdly, no complex parameters such as the learning

rate are needed for tuning. Fourthly, the adaptation time is fast

as no feature selection is required.

3. ONLINE MULTIPLE INSTANCE SAMPLES

Given the adaptation method, the next step is online sample

collection, which should be manually easy so as not to involve

much human labor. Unlike the general boosting algorithm-

s, MILBoost [7] doesn’t require the positive samples being

strictly aligned. The original MILBoost needs line search in

the optimization and slow, so we re-derive a improved MIL-

Boost algorithm. Then we apply it to the online detector adap-

tation, by collecting multiple instances around the location of

an object. To reduce the number of instances, we also use the

offline detector itself to do instance pruning.

In MILBoost, the training set is {(X1, y1), ..., (XN , yN )},

where Xi = {Xi1, ..., Xim} denotes a bag containing m in-

stances and yi ∈ {−1,+1} is the bag’s label. Different bags

can have different numbers of instances. Given the set, the

goal is to learn a model H(x) the same as the general boost-

ing algorithms. The instance probability and bag probability

is defined as

pij ≡ p(yij = 1|xij) =
1

1 + exp(−2H(xij))
(2)

pi ≡ p(yi = 1|Xi) = 1−
∏

j
(1− pij) (3)

Eq.( 3) is a noise OR model meaning the bag is positive if at

least one instance in the bag is positive. We use the negative

log likelihood loss function

L(H) =
N∑
i=1

l(H) =

−
N∑
i=1

(1(yi = 1) log pi + 1(yi = −1) log(1− pi))

(4)

We solve the MILBoost following GradientBoost frame-

work [8] and the pseudoresponse is derived as

ỹij = −[
∂L(yi, H(xij))

∂H(xij)
] =

{
2pij(1−pi)

pi
if yi = 1

−2pij if yi = −1
(5)

In boosting round t, the update is

Ht(x) = Ht−1(x) + ρtht(x, a) (6)

ht is obtained by fitting to {ỹij}ij and ρt can be obtained

by line search to minimize L(H) as in [7]. But line search
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is slow and we seek to optimize it directly in the case when

the weak learner ht is a R-terminal regression tree. The tree

has the form h(x) = h(x, {br, Rr}R1 ) =
R∑

r=1
br1(x ∈ Rr),

where {Rr}R1 and {br}R1 is the disjoint tree regions and its

regression values respectively. Then update Eq. 6 becomes

Ht(x) = Ht−1(x) +
R∑

r=1

γrt1(x ∈ Rrt) (7)

where γrt = ρtbrt. We do separate updates in each terminal

region Rrt

γrt = argmin
γ

∑
xij∈Rrt

l(yi, Ht−1(xij) + γ) (8)

No closed-form solution exists for Eq. 8, and similar to Gradi-

entBoost derivation we approximate it by a Newton-Raphson

step. After derivation, the final result is

γrt =
∑

xij∈Rrt

ỹij/[
∑

xij∈Rrt,yi=1

2ỹij(pij +
pij
pi

− 1) +

∑
xij∈Rrt,yi=−1

|yij | (2− |yij |)] (9)

Note the above equation equals to the GradientBoost when

the bag contains a single instance, which means it can be s-

moothly applied to the offline data in the adaptation in Sec. 2,

as the offline samples can be viewed as 1-instance bags.

In online adaptation, firstly objects should be localized for

generating positive samples. Due to MILBoost, manually an-

notation with heavy human labor is not necessary. We use

the offline trained detector to localize the objects and only the

false positives are removed manually. So the annotation work

is dramatically reduced. Exhaustively collecting all the in-

stances around an object spatially in all neighbor scales will

result in too many instances, and we use the offline detector to

do instance pruning. Only the instances classified to be posi-

tive by the detector with high confidence value are retained.

4. EXPERIMENTS

We test the proposed detector adaptation method on the hu-

man detection task, in terms of the adaptation ability and gen-

eralization ability. The offline detector is trained as described

in [10] on the Inria human training dataset [13] with gener-

al boosting. Then we perform the detector adaptation on two

scenes taken from PETS2006 [14], and each has two videos

for training and testing (SceneA: S4-T5-A-4 for training, S3-

T7-A-4 for testing. SceneB: S4-T5-A-1 for training,S3-T7-A-

1 for testing). The adapted detectors’ adaptation ability on the

two scene is evaluated on the respective testing video firstly.

Then the adapted detectors’ generalization ability is evaluted

on the Inria human testing dataset.

In SceneA and SceneB, we test two adaptation method-

s called onlineMILSample and onlineNoMILSample. On-

lineMILSample collects multiple instance samples from the

training video in a 20 frames interval and about 200 bags

(averagely a bag contains 8 instances) are collected. Onli-

neNoMILSample only use one instance with maximum con-

fidence (this equals GradientBoost). The miss rate vs. FP-

PI(False Positives Per Image) results are showed in Fig. 1,

with the offline detector as a comparison. From the result-

s on both scenes, both online adaptation methods gain sig-

nificant improvements compared to the offline detector, es-

pecially the onlineMILSample method (3%-7% on SceneA,

8.5%-10% on SceneB). Also, onlineMILSample is better than

onlineNoMILSample, which illustrates the effectiveness of

multiple instance samples collection. We also compare our

method to Zhang’s method [4], which also consider the of-

fline training data by taylor expansion. Directly comparison

is infeasible since our offline detector is not learned with Dis-

creteBoost, so it cannot be adapted with their method. We

compare the relative improvement between the adapted de-

tector and offline detector. Zhang’s best result selected from

different learning rates gives an improvement from 1% to 5%,

which is inferior to our improvement. Our adaptation method

also has high efficiency with only 30ms to update a weak clas-

sifier.

Good generalization ability is also important for an adapt-

ed detector, since the scene is not strictly fixed, and still un-

seen data in the scene is expected. The result on the Inria

human testing set is showed in Fig. 2, in terms FPPW (False

Positive Per Window) [13]. It illustrates the adapted detec-

tors also have similar performance with the offline detector

(especially in the actual working region around 10−4 FPPW),

which means their generalization ability is not damaged.

5. CONCLUSIONS

We have proposed a data level object detector adaptation

method which can be widely applied to boosting based de-

tectors. The method is fully compatible with offline training

method and easy to implement. We also introduce a re-

derived MILBoost with multiple instance samples to the

online adaptation process, which doesn’t require the samples

to be strictly aligned and is ideal for online sample collec-

tion. Experiment results with the human detector on public

datasets illustrate the adapted detector has both good adap-

tation ability, while maintaining its generalization ability as

well.

Currently, our method still needs small human labor to

remove some false positive in the sample collection. In the

future, we will combine MILBoost with co-training to fully

automatically collecting online samples.
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Fig. 1. The performance of the adapted human detectors with onlineMILSample and onlineNoMILSample on the test video.

Left: SceneA results. Right: SceneB results.

Fig. 2. The performance of the adapted human detectors in

SceneA and SceneB on Inria human test set.
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