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ABSTRACT

Semantic understanding from video is one of the most chal-

lenging tasks in video analysis. However, it has not been tak-

en enough attention. In this paper, we focus on understanding

the semantics of video in the driving scene. We present a

coarse-to-fine method to parse the driving scene, and obtain

the high-level semantic information of the scene. In the coarse

phase, we divide the captured frame into four separate parts

based on edge density entropy and scene context. In the fine

phase, we join multi-class object segmentation and detection

algorithms together in a unified Conditional Random Filed

(CRF) model for each part understanding. Moreover, the ob-

ject probabilistic location prior knowledge based on training

and previous edge density entropy result is also integrated in-

to our approach for better object localization. Experimental

results show that our proposed method is effective comparing

to current state-of-the-art approaches.

Index Terms— Semantic understanding; Conditional

Random Filed; multi-class segmentation; detection

1. INTRODUCTION

Semantic Scene understanding [1, 2, 3, 4] from video is one of

the central goals in video analysis. However, because it is so

tightly based on accurate object detection and segmentation

that it has not been substantially developed for a long time.

Recently, in light of the successes of detection [5] and seg-

mentation [6] technologies, it has received increasing atten-

tions. Brostow [1] et al. proposed a method for understand-

ing the scene according to motion features after segmentation

and detection of objects, and their experiment results show it

is effective. Li [2] et al. tried to find an united model for total

scene understanding by combining classification, annotation

and segmentation together. To synthetically use many kinds
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of information of the scene, Hoiem [3] et al. presented an ap-

proach based on scene context. However, the output semantic

information of these methods is imperfect because they mere-

ly focus on what and where. Ladicky [4] et al. presented an

approach by combining the object detectors and CRFs, their

work is impressive. However, their work focused more on the

effect of segmentation results by fusing the detectors directly.

In this paper, we concentrate on understanding the driving

scenes because of its broad applications and its typical repre-

sentative means for other scenes. Our objective is to obtain

the semantic information of the driving scene, such as what,
where, which and how many: we distinguish each detected ob-

ject, get their specific positions, know current particular road

scene, and also compute out the amount of each object. In our

proposed coarse-to-fine method, we first divide the captured

image into four separate parts based on edge density entropy

and scene context in the coarse phase. Then, we integrate the

state-of-the-art multi-class segmentation [6] and object detec-

tion [5] algorithms into an unified CRF [7] model for each

part understanding in the fine phase. Moreover, we also incor-

porate the object probabilistic location prior knowledge based

on previous edge density entropy result and both the off-line

and on-line training into our approach for better object local-

ization. These object location based priors can correct the

false object detection. Our experiments show that it is very

helpful for obtaining the how many information. In our work,

we classify the objects into two categories: things and stuff

according to the definition of [8]. We detect [5] and localize

the things by bounding boxes, such as cars, pedestrians and

bicycles. Meanwhile, we segment both things and stuff using

the multi-class segmentation approach [6]. We show that our

method is better than two state-of-the-art approaches in the

experimental section.

The rest of this paper is organized as follows: Section

2 describes our method of splitting the scene in the coarse

phase, and Section 3 presents our method of understanding

the scene in the fine phase, respectively. Experimental results

and analysis are described in Section 4. Finally, Section 5

concludes the work.
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Fig. 1. Coarse split of driving scene based on edge density

entropy (binary image) and context information.

2. DRIVING SCENE SPLITTING IN COARSE

To obtain which information, we split the captured scene into

four parts: left, right, top and bottom first, and we call it the

coarse phase. Inspired by [9], we split all of driving scenes

into three categories: urban scene, high way scene and rural

scene(see Fig. 2), but our method is based on the edge density

entropy and context of each scene.

First, we compute the edge density entropy based on seg-

mentation algorithm [10] (see Fig. 1) by labeling the binary

maps of the segmentation results. When we get the binary

maps, we can straightly know that the sky and load parts have

a lower edge density entropy. So we can easily obtain the cen-

ter region that combining with sky and load. Once the center

region is found, we can use it to split the scene in coarse. As

seen in Fig. 1, three representative scenes are divided into

four parts from the point which is the center of above center

region. The four intersection angles, especially the top inter-

section angle β are the useful features for classifying differ-

ent scenes (see Fig. 1). However, we may fail to distinguish

the different scenes which have the similar angle β when us-

ing segmentation in some instances. At this time, we will in-

corporate context information into above approach for better

scene classification. For example, we may use the area ratio

of sky to the whole image, the area ratio of building to the

whole image, etc. In this way, we can obtain the information

of which scene.

In fact, above splitting of scene strategy in coarse is very

useful for our proposed probabilistic location priors-based

correction in the work.

3. DRIVING SCENE UNDERSTANDING IN FINE

3.1. Combine multi-class segmentation and detection

CRF [7] framework has become increasingly popular for

modeling object segmentation problems because of providing

a principled way to integrate things and stuff.

Multi-class object segmentation. TextonBoost proposed

by Shotton et al. [6] is one of the state-of-the-art multi-class

segmentation algorithms which combines recognition and im-

age segmentation together. They use a boosted combination

of texton features to encode the shape, texture and appearance

of the object classes. A CRF was then used to combine the re-

sult of texton with colour and location based likelihood terms.

The conditional probability of the class labels b and the given

image Y can be defined as follows:

logP (b|Y,w)=
∑

i

γi(bi, Y ;wγ)+π(bi, Yi;wπ)+λ(bi, i;wλ)

+
∑

(i,j)

ϕ(bi, bj , μi,j(Y );wϕ)−logχ(w, Y ) (1)

where
∑

is the set of edges in the 4-connected grid, χ(�,Y )
is the partition function. γi, π, λ and ϕ means shape, color,

location and edge, respectively. � = �γ +�π +�λ +�ϕ

are the model parameters, and i and j index nodes in the grid

(corresponding to positions in the image) [6]. Based on the

likelihood terms of CRF, it is useful for labelling problem in

multi-class segmentation. The important problem is to find

the min Energy functions for segmentations. Energy func-

tions for object segmentation can be defined as follows:

E(X)=
∑

i∈κ

ϕi(Xi)+
∑

(i,j)∈δ

ϕij(Xi, Xj) (2)

where ϕi means the unary relation for pixel Xi, ϕij means the

pairwise relation for pixel Xi and pixel Xj . κ and δ are the

pixel sets. The labels are used for indicating the multi-class

segmentation results. Details can be seen in [6].

Object detection combined in CRF framework. In or-

der to get the sematic information of What and Where, we also

need to use the state-of-the-art object detection approach [5]

for localization. Sometimes, the segmentation algorithm and

detection algorithm both do well. So we can use this infor-

mation to obtain the sematic information of What and Where
very conveniently. But this is only the well instance. In fact,

the results are not so good for most of time. As seen in Fig. 2,

the segmentation algorithm and detection algorithm not both

do well meantime. When the segmentation algorithm does

well, the detection algorithm is wrong(see the right of Fig.

2). Meanwhile, When the detection algorithm does well, the

segmentation algorithm is wrong(see the middle of Fig. 1).

What can we do to deal with this issue? We propose a proba-

bilistic object location priors based method for correcting the

wrong instances above.

3.2. Our probabilistic location priors for correction

As seen in Fig. 2, current state-of-the-art detection [5] and

segmentation [6] algorithms have the problem of running suc-

cessfully together all-time. Thus, we are not able to achieve

satisfied What and Where information. Meanwhile, this will

also result in wrong statical analysis on How many informa-

tion. To solve this problem, we bring a probabilistic object-

wise based localization priors into our approach. In our mech-

anism, we consider the location priors based on prior coarse

split results (see Fig. 3).

Off-line Training. The CamVid [11] database is used for

training in our experiment. It consists of 101 960 × 720 pix-

el images in which each pixel was manually assigned to one
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Fig. 2. Two cases of false object detection or segmentation.

(left) input image from CamVid [11]; (middle) detection is

right, but segmentation is wrong; (right) segmentation is right,

but detection is wrong. (Best viewed in colour)

Fig. 3. Our probabilistic object location priors for correction.

(left) each scene is divided into four parts as priors; (right) the

correction results of our method. (Best viewed in colour)

of the 32 object classes(colour labeled in Fig. 2, here show

8 categories) that are relevant in a driving environment. Our

training mechanism is composed of two parts: off-line train-

ing and on-line training. First, we choose 500 pictures from

the CamVid database, and compute out the statical probability

of the each object class (note that the objects are only things,

such as pedestrians and cars). As seen in left of Fig. 3, each

scene is divided into four parts for off-line training.

On-line Training. When we get the initial probability of

each object, we use the probability to as a feedback for correct

object localization. As seen in the top-right of Fig. 3, the false

object detection labeled in green is not elected by our prob-

abilistic location priors. As seen in the bottom-right of Fig.

3, the false segmentation person is been found again. Mean-

while, we will add each probability into initial prior proba-

bilities when the detection and segmentation algorithms both

localize it. We call it on-line training. In this way, we will

improve the accuracy both for detection and segmentation re-

sults.

4. EXPERIMENTAL RESULTS

4.1. Datasets

Training Data. The CamVid [11] video database which con-

tains typical driving scenes is used for training in our exper-

iment. As seen in Fig. 8, we label each pixel in CamVid as

one of 8 categories: building, road, sky, car, grass, person,

tree and void. Testing Data. Part of our testing video data

are captured from the driving car, and the other part of testing

video data (or images) are captured from the internet.

4.2. Results analysis

The goal of the paper is to understand the sematic informa-

tion: Which, What, Where and How many in the videos of the

driven scene in text format. Based on our experiments, the

final complete text format result containing these important

semantic information will be generated finally.

Which. As seen in Fig. 1, we have shown how to obtain

Which information. We divide the driving scene into three

categories: urban scene, highway scene and rural scene. Now

we estimate the performance of our method using a confusion

matrix (see Fig. 4) in total collected 200 driving scene videos

for test. The experimental result can be seen in Fig. 4. We can

obtain a high overall accuracy about 91.4% comparing to the

ground truth results. We find that the recognition of highway

scene for Which information is more correct than the urban

scene and rural scene.

What and Where. In our experiment, we use HOG- LBP

[5] based detection method to detect the things which con-

tain Pedestrians, Cars and Bicyclists. To get the information

of Where, we take TextonBoost [6] based multi-class seg-

mentation method to obtain locations of objects contain- ing

of both things and stuff. We compare the detection results of

cars and pedestrians in three methods: only HOG-LBP, HOG-

LBP combine with TextonBoost and HOG-LBP both combine

with TextonBoost and our proposed probabilistic location pri-

ors based correction, respectively. The result can be seen in

Fig. 5. We use FPPI (false positives per image) versus mis-

s rate to estimate the performance of these three algorithms.

We find that our method can detect cars and pedestrians bet-

ter than other two state-of-art approaches (for example, our

method has a lower miss rate at the same FPPI), so it can ob-

tain better semantic information What and Where.

How many. In order to estimate our method for obtaining

How many information, we compare our method with HOG-

LBP [5] method and the combined algorithm of HOG-LBP

and TextonBoost [6] for counting the cars and pedestrians,

respectively. We both testify them in sparse scenes (means

the scene contain low flow of cars and pedestrians) and dense

scenes. The experimental results can be seen in Fig. 6. They

show that our proposed method is more robust than above two

typical algorithms for getting a better How many information.

Final result. Based on prior result of Which, What, Where
and How many, we can get a total understanding of a driving

scene in the input video. We first obtain Which based on edge

density entropy. Then, we get the What, Where and How

many using the combination of HOG-LBP [5], TextonBoost

[6] and probabilistic location priors. As seen in Fig. 7 and

Fig. 8, we present a visual procedure of our proposed method

for obtaining the above semantic information. By combing

them together, we can export the whole of sematic informa-

tion in text (see Fig. 8)

5. CONCLUSIONS

In this paper, we have proposed a new approach for under-

standing the video semantics in text format. Specifically, we

focus on the driving scene video as a case, using our presented
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Fig. 4. Comparison on Which. Our algorithm can reach an

overall accuracy of 91.4% comparing to the ground truth re-

sults in the testing videos.
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Fig. 5. Comparison on What and Where. Our algorithm com-

pares with two state-of-art algorithms for car detection (left)

and pedestrian detection (right) in the testing videos.

Fig. 6. Comparison on How many. Our algorithm com-

pares with two state-of-art algorithms for car amount (left)

and pedestrian amount (right) estimation in the testing videos.

coarse-to-fine method. Currently, we mainly work on images

which constitute the video directly. In the future, we will try

to obtain When information as an effective complement be-

tween the frames.
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