
AN EFFICIENT ALGORITHM FOR L1-NORM PRINCIPAL COMPONENT ANALYSIS

Linbin Yu, Miao Zhang, Chris Ding

Department of Computer Science & Engineering, University of Texas, Arlington, TX 76019

ABSTRACT
Principal component analysis (PCA) (also called Karhunen -

Loève transform) has been widely used for dimensionality re-

duction, denoising, feature selection, subspace detection and

other purposes. However, traditional PCA minimizes the sum

of squared errors and suffers from both outliers and large fea-

ture noises. The L1-norm based PCA (more precisely L1,1

norm) is more robust. Yet, the optimization on L1-PCA is

much harder than standard PCA. In this paper, we propose a

simple yet efficient algorithm to solve the L1-PCA problem.

We carry out extensive experiments to evaluate the proposed

algorithm, and verify the robustness against image occlusions.

Both numerical and visual results show that L1-PCA is con-

sistently better than standard PCA.

Index Terms— Principal component analysis, robust-

ness, Lagrangian methods, Image processing

1. INTRODUCTION

Principal component analysis (PCA) (also called Karhunen -

Loève transform) has been widely used for dimensionality re-

duction, denoising, feature selection, subspace detection and

many other purposes and in many research areas. It is well-

known that standard PCA is not robust: it minimizes the sum

of squared errors; therefore large errors due to outliers and

feature noises such as occlusion, after been squared, domi-

nate the error function and force the low rank approximation

to overwhelmingly concentrate on these few data points and

features, while nearly ignoring most of other data points.

Over the years, there are a large number of research to

solve this problem [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]. There

are many different approaches. For example, early work fo-

cus on computing covariance matrix [4]. There are work on

using L2,1-norm to extract robust subspace [3], sparse coding

[1]. More recent approach uses trace norm formulation [10].

However, the approach using pure L1 norm1 is used widely

because it offers an simple and elegant formulation [5] [6]

[7] [9]. A difficulty of pure L1-PCA is that the optimization

tends to be hard. Several computational methods have been

1In this paper, the ”L1-norm” refers to the L1,1-norm defined in Eq.(4).

This definition of matrix L1-norm is used in many earlier papers because it

is similar to the L1 norm of a vector. However, for a n-by-m matrix, there

already exists an L1-norm definition: ‖A‖1 = maxv∈�m ‖Av‖1, For this

reason, we call the norm defined in Eq.(4) as L1,1-norm.

proposed [5] [6] [7] [9]. These methods are either fairly com-

plicated or difficult to scale to large problems.

In this paper, we propose a simple yet computational ef-

ficient algorithm to solve the L1-PCA optimization. This

method also provide some insights to the optimization prob-

lem such as the Lagrangian multiplier and KKT condition.

We also carry out extensive experiments in face recognition,

and verify the robustness of the proposed method to image

occlusions. Both numerical and visual results validate the ef-

fectiveness of our proposed method.

2. FROM PCA TO L1-PCA

In standard principal component analysis, the dimension re-

duction is on the rank of the matrix. This can be seen through

as data compression or approximation. Given p-dimensional

data X

X � UV (1)

where (U, V) are determined by

min
U,V

‖X − UV ‖2F , s.t. U ∈ �p×k, V ∈ �k×n (2)

where for a m × n matrix A, ‖A‖F =
√∑m

i

∑n
j A

2
ij

is the Frobenius norm. It is well-known that the solution

to the above optimization is given by the singular value

decomposition (SVD). Let SVD of X be X = FΣGT ,

where r=rank(X), F = (f1 · · · , fr) are left singular vec-

tors, G = (g1 · · · , gr) are right singular vectors, and Σ =
diag(σ1, · · · , σr), σ1 ≥ σ2 ≥ · · · ≥ σr. Then the solution

of Eq.(2) is U = Fk = (f1 · · · fk) and V = ΣkG
T
k , where

Gk = (g1 · · · gk) and Σk = diag(σ1, · · · , σk).
The orthogonal matrix U is regarded as the projection ma-

trix. The k × n matrix V = (v1 · · · vn) is the projection of X
i.e., representation of X in the new basis U . Because gener-

ally k � p, V has much smaller dimension than original data

X , and is generally used for further computation. Thus UV
is the low-rank approximation of X .

We may view this approximation as denoising model:

Xij = (UV)ij + Eij (3)

where the input X is consist of the true signal UV and noise

E. Here UV can be viewed as model parameter: θij =

1377978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

(UV)ij . In standard PCA, we regard the noise as white-

noise described by Gaussian distribution, p(x) ∼ exp(−(x−
θ)2/2σ2).

Thus the error function is the usual least square of Eq.(2).

Although the least square error function is not robust for large

errors, this is not a problem for Gaussian white noise because

large noises bigger than 3σ are very rare (with probability

p < 0.003).

For the large noises, the distribution model is the Lapla-

cian distribution, p(x) ∼ exp(−|x−θ|/σ). The error function

is the minus log-likelihood

−log[Πn
i=1p(xi)] ∝

n∑
i=1

|xi − θ|.

Thus the more robust version of the PCA is formulated using

matrix L1,1 norm:

min
U,V

‖X − UV ‖1,1 =

n∑
j=1

p∑
i=1

|(X − UV)ij |,

s.t. U ∈ �p×k, V ∈ �k×n

(4)

Below we introduce an efficient and stable algorithm to

solve Eq.(4). This is the main contribution of this paper.

3. ALGORITHM FOR L1-PCA

Eq.(4) can be rewritten equivalently as

min
E,U,V

‖E‖1,1
s.t. E = X − UV, U ∈ �p×k, V ∈ �k×n

(5)

The Augmented Lagrange Multiplier (ALM) method is em-

ployed [11] to solve this problem. ALM solves a sequence of

sub-problems

min
E,U,V

‖E‖1,1 + 〈A,X − UV − E〉+ μ

2
||X − UV − E||2F

(6)

where matrix A is the Lagrange multipliers, scalar μ is

the penalty parameter, 〈P,Q〉 is defined as
∑

ij PijQij =

TrPTQ.

The ALM is an iteratively updating algorithm. There are

two major parts, solving the sub-problem and updating pa-

rameters, which will be presented in the following sections.

3.1. Solving the Sub Optimization Problem

The key step of the algorithm is solving the two sub-program

of Eq.(6) for each set of parameter values of A, μ. Fortu-

nately, this can be solved in closed form solutions for E and

pair of (U, V).

Solve for E. First, we solve E while fixing U and V .

From Eq.(6), it becomes

min
E

‖E‖1,1 + μ

2
||E − (X − UV +

A

μ
)||2F (7)

This problem has closed form solution:

E∗
ij = sign(Pij)(|Pij | − 1/μ)+, P = X − UV +

A

μ
. (8)

Solve for U, V . Next we solve U and V together while

fixing E. From Eq.(6), it becomes

min
U,V

〈A,X − UV − E〉+ μ

2
||X − UV − E||2F . (9)

Which is is equivalent to

min
U,V

μ

2
||Q− UV ||2F , Q = X − E +

A

μ
; (10)

The solution is given by standard PCA. Denote the singular

value decomposition (SVD) of Q as

Q = FΣGT (11)

Only first k largest singular values and associated singular

vectors are needed. Then the solution of U, V are given by

U = Fk

V = ΣkG
T
k

(12)

3.2. Updating ALM Parameters

In each iteration of ALM, after obtaining consistent E and

(U, V), the parameters A and μ are updated as following

A ⇐ A+ μ(X − UV − E) (13)

μ ⇐ μρ (14)

where ρ > 1 is a constant.

The complete algorithm is described in Algorithm 1.

Input: X , k
Output: U, V
Initialize μ = 1/||X||F , ρ = 1.2, E = 0, A = 0
repeat

Compute U, V using Eq.(12)

Compute E using Eq.(8)

A = A+ μ(X − UV − E)
μ = min(μρ, 1010)

until Converge
Algorithm 1: L1-PCA Algorithm

1378

4. ANALYSIS

In ALM, the constraint E = X − UV in Eq.(5) is enforced

in two ways: (1) using Lagrangian multiplier A by adding

〈A,X − UV − E〉 in the objective of Eq.(6). (2) additional

penalty terms μ
2 ||X − UV − E||2F .

This ”double-enforcing” of the constraint E = X − UV
will succeed if (1) either Lagrangian multiplier A approach

the correct values, or (2) penally parameter μ becomes very

large to enforce the constraints directly. In ALM method,

these two channels are coherently combined together to

achieve the final solution.

We demonstrate this fact below. The Lagrangian function

is

L = ‖E‖1,1 + TrAT (X − UV − E) (15)

where A is the Lagrangian multiplier to enforce the constraint

E = X −UV . The Karush-Kuhn-Tucker (KKT) condition is

∂L

∂Eij
=

∂‖E‖1,1
∂Eij

−Aij = 0 (16)

This gives

Aij =

{
sign(Eij) if Eij
= 0

∂|Eij | if Eij = 0
(17)

where ∂|Eij | ∈ [−1, 1] is the subgradient of function f(x) =
|x|.

A convex function f(x) always satisfies

f(x) ≥ f(x0) + f ′(x0)(x− x0), ∀ x

where f ′(x0) is the gradient of f(x) at x = x0. When the

gradient f ′(x0) at x = x0 does not exist, such as the gradient

of f(x) = |x| at x = 0, we define the subgradient of f(x) at

x = x0 (denoted by ∂f |x0
) as any real number that satisfies

f(x) ≥ f(x0) + ∂f |x0
(x− x0), ∀ x.

In general, subgradient at x = x0 is not unique. The set of

subgradients at x = x0 form a closed interval [a, b], where a, b
are directional derivatives, which are calculated using one-

side limits (for f(x) = |x| at point x0 = 0)

a = lim
x→x−

0

f(x)− f(x0)

x− x0
= −1,

b = lim
x→x+

0

f(x)− f(x0)

x− x0
= 1,

Thus subgradients of f(x) = |x| at point x0 = 0 is any value

in the closed interval [−1, 1]. With this introduction of sub-

gradient, we can verify if the A obtained in ALM is indeed the

Lagrangian multiplier through the KKT condition of Eq.(17).

Once the ALM is converged, A should satisfy Eq.(17).

We now demonstrate the correctness of our algorithm. we
randomly generate 5× 6 matrix X, and set k = 3

X =

⎛
⎜⎜⎜⎜⎝

0.46 0.87 0.79 0.51 0.37 0.54
0.45 0.05 0.45 0.20 0.94 0.65
0.55 0.22 0.33 0.43 0.02 0.73
0.81 0.46 0.06 0.17 0.83 0.09
0.70 0.96 0.74 0.75 0.63 0.88

⎞
⎟⎟⎟⎟⎠

Using our algorithm, the converged parameter A is

A =

⎛
⎜⎜⎜⎜⎝

−1.00 0.82 1.00 −1.00 0.44 −0.39
−0.70 0.56 0.70 −0.68 0.31 −0.29
1.00 −0.76 −1.00 0.89 −0.43 0.41
1.00 −0.83 −1.00 1.00 −0.47 0.44
0.22 −0.20 −0.21 0.27 −0.09 0.06

⎞
⎟⎟⎟⎟⎠

and residue values are

E = X − UV =

⎛
⎜⎜⎜⎜⎝

−0.11 0 0.29 −0.08 0 0
0 0 0 0 0 0

0.56 0 −0.19 0 0 0
0.10 0 −0.08 0.02 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

One can clearly see that for non-zero elements Eij , the cor-

responding elements in A equal to sign(Eij). For zero ele-

ments Eij , the corresponding elements Aij are subgradients

satisfying Aij ∈ [−1, 1]. In other words, A obtained my our

algorithm is indeed the Lagrangian multiplier, and the solu-

tion satisfies the KKT condition.

5. EXPERIMENTS

We perform experiments on AT&T and Extended YaleB face

data sets. The AT&T face data contains 400 upright face im-

ages of 40 individuals, collected by AT&T Laboratories Cam-

bridge. Each image is resized to 28x23 pixels in this exper-

iment. The extended Yale Face Database B contains 2414

cropped frontal face image of 38 individuals. We select 10 im-

ages with different brightness per individual and resize them

to 32x28 pixels.

To check the convergence of the proposed ALM algo-

rithm, in Figure 1 we plot objective function of each iteration

on two datasets. Clearly, the algorithm takes about 60 itera-

tions to converge.

According to Algorithm 1, one can find that in the first it-

eration A = 0, E = 0, Q = X , so the first U, V is actually the

solution of standard SVD of X . Once started, the algorithm

wonders around for about 30 iterations for the parameters of

A to settle down to the proper values, i.e., becoming close to

the true Lagrangian multiplier values. From there, the overall

algorithm converges very quickly, in essentially 10 iterations

and then reach the asymptotic values of the objective function.

We generate sizes 1 × 1, 2 × 2, 3 × 3 occlusions in each

image. Denote X as the original images, O as the noise due

to occlusion, then X − O is the occluded images, which are

the input of L1-PCA and PCA.

1379

0 20 40 60 80 100
4

6

8

10

12

14
x 10

6

Iteration number

O
bj

ec
tiv

e
fu

nc
tio

n

YaleB

0 20 40 60 80 100
5

6

7

8

9

10

11

12
x 10

6

Iteration number
O

bj
ec

tiv
e

fu
nc

tio
n

AT&T

Fig. 1. Convergence of the proposed algorithm on YaleB and

AT&T datasets. Shown are values of ‖X − UV ‖1. The first

point is ‖X − U0V0‖1 where U0, V0 are the SVD of X , ac-

cording to Algorithm 1.

Data d m ‖O‖F RPCA RL1PCA

YaleB 1 100 19495 13240 8104

YaleB 2 25 18674 13997 8120

YaleB 3 10 17173 14230 8153

AT&T 1 100 24452 16826 7924

AT&T 2 25 23623 17987 9050

AT&T 3 10 22257 18856 14613

Table 1. Comparison of denoising reconstruction error. m is

the number of size d× d occlusions in one image. RPCA and

RL1PCA are the noise-free reconstruction errors.

To see the noise reduction effects, we compute the noise-
free reconstruction error is defined as

RPCA = ‖YPCA −X‖F
RL1PCA = ‖YL1PCA −X‖F

(18)

where YPCA is the reconstructed images from PCA and

YL1PCA is the reconstructed images from L1-PCA

Note that these are not the usual reconstruction errors

which are defined as ‖YPCA − (X − O)‖F and ‖YL1PCA −
(X −O)‖F , because (X −O) is the input to the algorithms.

These two quantities do not measure the denoising effects.

The results are listed in Table 1. From Table 1, RL1PCA

is 22% to 50% less than RPCA on the same occluded image

data. Figure 2 shows some example of denoised images.

Conclusions. In this paper, we propose a computational

efficient algorithm to solve L1-norm based PCA. Extensive

experiments are carried out to evaluate the proposed algo-

rithm. Both numerical and visual results are consistently bet-

ter than standard PCA, which validate the effectiveness of the

proposed L1-PCA method.

Acknowledgements. This work is partially supported by

NSF-CCF-0939187, NSF-CCF-0917274, NSF-DMS-15228.

Fig. 2. Examples of denoising. The top row lists the cor-

rupted images. The middle row lists reconstructed images by

standard PCA. The bottom row lists reconstructed images by

the proposed L1-PCA.

6. REFERENCES

[1] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal compo-

nent analysis,” J. Computational and Graphical Statistics, vol.

15, pp. 265–286, 2006.

[2] F. D.A. Torre and M. J. Black, “A framework for robust sub-

space learning,” Int’l J. Computer Vision, pp. 117–142, 2003.

[3] C. Ding, D. Zhou, X. He, and H. Zha, “R1-pca: Rota-

tional invariant l1-norm principal component analysis for ro-

bust subspace factorization,” Proc. Int’l Conf. Machine Learn-
ing (ICML), June 2006.

[4] J.S. Galpin and D.M. Hawkins., “Methods of l1 estimation

of a covariance matrix,” Computational Statistics and Data
Analysis, vol. 5, pp. 305–319, 1987.

[5] A. Baccini, Ph. Besse, and A. De Falguerolles, “An L1-norm

PCA and a heuristic approach,” Ordinal and Symbolic Data
Analysis, edited by E. Diday, Y. Lechevalier and O. Opitz,
Springer, 1996.

[6] J. Bolton and Wojtek J. Krzanowski, “A characterization of

principal components for projection pursuit,” Mar. 26 2001.

[7] Q. Ke and T. Kanade, “Robust l1 norm factorization in the

presence of outliers and missing data by alternative convex

programming,” in IEEE Conf. Computer Vision and Pattern
Recognition, 2004, pp. 592–599.

[8] N. Kwak, “Principal component analysis based on L1-norm

maximization,” IEEE Trans. Pattern Anal. Mach. Intell, vol.

30, no. 9, pp. 1672–1680, 2008.

[9] J. Gao, “Robust L1 principal component analysis and its

bayesian variational inference,” Neural Computation, vol. 20,

no. 2, 2008.

[10] E. J. Candes, Xiaodong Li, Yi Ma, and John Wright, “Robust

principal component analysis?,” Dec. 18 2009.

[11] D. P. Bertsekas, Nonlinear Programming, 2nd Ed., MIT Press,

1998.

1380

