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ABSTRACT

This paper is motivated by the challenge of high fidelity
processing of images using a relatively small set of projection
measurements. This is a problem of great interest in many
sensing applications, for example where high photodetector
counts are precluded by a combination of available power,
form factor and expense. The emerging methods of dictionary
learning and compressive sensing offer great potential for ad-
dressing this challenge. Combining these methods requires
that the signals of interest be representable as a sparse com-
bination of elements of some dictionary. This paper develops
a method that aligns the discriminative power of such a dic-
tionary with the physical limitations of the imaging system.
Alignment is accomplished by designing a projection matrix
that exposes and then aligns the modes of the noise with those
of the dictionary. The design algorithm is obtained by mod-
ifying an algorithm for designing the pre-filter to maximize
the rate and reliability of a Multiple Input Multiple Output
(MIMO) communications channel. The difference is that in
the communications problem a source is being matched to a
channel, whereas in the imaging problem a channel, or equiv-
alently the noise covariance, is being matched to a source.

Our results shown that using the proposed communica-
tions design framework we can reduce reconstruction error
between 20%, after only 20 projections of a 28 × 28 image,
and 10% after 100 projections. Furthermore, we noticeably
see the superior quality of the reconstructed images.

Index Terms— Low Resolution Imaging, Compressed
Sensing, MIMO Communication, Precoder Design, Mode
Alignment, Mutual Information

1. INTRODUCTION

Compressive sensing (CS) has received significant attention
in recent years due to the impressive results that are promised
for the reconstruction of a high-dimensional signal with a rel-
atively small set of random projection measurements. The
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results hinge on the signal in question being sparse, that is the
signal belongs to a low dimensional manifold although it lives
in a much higher dimensional space. The optimization prob-
lem of designing the measurement matrix that minimizes the
reconstruction error subject to unit norm columns has paral-
lels with the communications theory problem of optimal pre-
coder design subject to a power constraint.

In a communications system, an objective that is well-
studied is how to maximize the mutual information between
the input and output of a channel; one instance is the design
of the optimal precoder that adapts the signal to the chan-
nel, subject to a power constraint. The optimal solution for
this problem has been characterized for Gaussian inputs [1],
non-Gaussian inputs with a diagonal precoder [2] and non-
Gaussian inputs with a general precoder [3]. Many of these
results build on a fundamental result for one-dimensional sig-
nals [4], and its extensions to multivariate sources [5]. This
result relates the derivative of the mutual information and the
minimum mean squared error (MMSE), thus connecting in-
formation theory to estimation.

We will demonstrate how communication theory can be
applied to great effect in an image processing context. Con-
sider the reconstruction of the MNIST digit data in Fig. 1(a);
training data is used to learn a dictionary that is represented by
a Gaussian mixture model (GMM) which describes the data
by a mixture of Gaussians living in (possibly) overlapping
sub-spaces. Such models have been shown to accurately char-
acterize true images and are well-accepted in the literature [6].
We then compare the performance in three separate scenarios.
In the first scenario, we sense and reconstruct the data using
a projection matrix with elements drawn iid from N (0, 1),
which has been shown to lead to good performance for sparse
signals [7]. In the second scenario in Fig. 1(a), we design a
one-shot projection matrix based on the information-theoretic
results in this paper which allow us to represent explicitly, in
terms of fixed point equations, the optimal projection matrix
for a general multivariate. In the third scenario, we are able to
adaptively modify the measurement matrix using information
from previous observations, again using the proposed frame-
work. We see from the qualitative image results in Fig. 1(a)
and the quantitative MSE results in Fig. 1(b) that image re-
construction based on the information theoretic principles is
superior to reconstruction based on random projection. Note
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(a) The first column is the ground truth, subsequent columns show recon-
structions for 5, 10, 20, 50 and 100 projections of a random projection matrix,
an optimized one-shot (non-adaptive) projection matrix and an optimized
adaptive projection matrix, respectively.
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Fig. 1. Reconstruction of MNIST digit data.

that all CS recovery results in Figs. 1(a) and 1(b) employ a
learned GMM. If one were to instead simply use conventional
CS with sparsity in an orthonormal basis (wavelets), the sig-
nal recovery is much worse [6].

In the rest of this paper we outline the theorems that jus-
tify the design principles behind these gains. The principle
of optimizing the performance of imaging systems via mu-
tual information is not a new topic, the novelty in this pa-
per is that the design principles presented here are valid for
any multivariate source distribution (in Fig. 1(a) the images
are modelled by a Gaussian mixture model (GMM) with low-
rank covariances [6]).

2. SYSTEM MODEL

We consider a general discrete-time noisy projection y ∈ R
k,

which is given by:

y =
√
g ·MD x+w (1)

where x ∈ Rn is the source vector, the matrices M ∈ Rk×m

and D ∈ Rm×n represent the measurement/projection matrix
and the dictionary, respectively, and w ∈ Ck represents a
zero-mean Gaussian noise with covariance Σw.

Without loss of generality, we assume that x has zero-
mean and covariance Σx = I. We shall design the measure-
ment matrix throughout via its singular value decomposition
(SVD) M = UMΛMV

ᵀ

M
where ΛM = diag

({√λMi}
)
,

and the eigenvalue decomposition (EVD) of the key model
matrices: the positive definite noise covariance Σw =
UwΛwU

ᵀ

w
, where Λw = diag ({λwi}), and the posi-

tive semi-definite matrix DΣxD
ᵀ = UDΛDU

ᵀ

D
where

ΛD = diag ({λDi}) and the positive semi-definite matrix
DEDᵀ = UEΛEUE

ᵀ, where ΛE = diag ({λEi}) and E is
the MMSE matrix associated with this model:

E = E {(x− E {x|y}) (x− E {x|y})ᵀ} (2)

It is important to note that the MMSE matrix is also a function
of the measurement matrix. We consider the design of the
measurement matrix that maximizes the mutual information
between the source vector and the measurement vector, i.e.,
we pose the optimization problem:

max
M

I (x;
√
g · M D x+w) s.t. tr (MMᵀ) ≤ P. (3)

3. OPTIMAL PROJECTION MATRIX:
MULTIVARIATE GAUSSIAN SOURCE

When we consider the design of the measurement matrix for
a multivariate circularly symmetric real Gaussian source, we
are able to take advantage of the well-known expressions for
mutual information and the MMSE matrix:

I (x;y) =
1

2
log det

(
I+ g ·Σ−

1

2

w MDΣxD
ᵀMᵀΣ

−
1

2

w

)
(4)

E =
(
Σ−1

x + g ·DᵀMᵀΣ−1

w MD
)−1

, (5)

where I is the identity matrix. The optimization problem in
(3) is solved by the following theorem,which capitalizes on
the relationship between the gradient of the mutual informa-
tion and the MMSE matrix [5], and also builds upon the con-
tributions in [8] and [9].

Theorem 1. The optimal measurement matrix that solves (3)
for a multivariate circularly symmetric real Gaussian source
with mean E {x} = 0 and covariance E {xxᵀ} = I is:

M� = Uwdiag

⎛
⎝
√(

1

η
− 1

g
· λwi

λDi

)+

⎞
⎠U

ᵀ

D
(6)
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(a) Exposing modes (b) Aligning and order-
ing modes

(c) Waterfilling power
allocation

Fig. 2. Diagrammatic representation of the actions of the op-
timal projection matrix.

where η is such that tr(MMᵀ) = P and the eigenvalues of
DDᵀ andΣ−1

w are arranged in descending order, i.e., λD1 ≥
λD2 ≥ · · · > 0 and λ−1

w1 ≥ λ−1

w2 ≥ · · · > 0.

It is also important to reflect on the nature of the opera-
tions carried out by the optimal projection matrix embodied
in Theorem 1 which we present diagrammatically. In Fig.
2(a) we depict that the optimal projection procedure is such
that it exposes the modes of the noise and the modes of the
dictionary. Then, in Fig. 2(b) we illustrate that the procedure
performs an alignment and ordering operation whose purpose
it to optimally match the modes of the noise to the modes of
the dictionary. Finally, Fig. 2(c) shows the, aptly described,
waterfilling power allocation policy [1].

Proof. The solution follows from the Karush-Kuhn-Tucker
(KKT) optimality conditions [10]:

η ·M� = g Σ−1

w
M�D E�Dᵀ (7)

where η ≥ 0 and a superscript star (�) denotes the optimal so-
lution, for example, E� is the MMSE matrix associated with
the optimal measurement matrix M�, i.e., E� = E (M�).

Post-multiplying the fixed-point equation in (7) by M�ᵀ,
we see that the resultant matrix is symmetric and is composed
of two positive semi-definite matrices that commute; this im-
plies that they are simultaneously diagonalizable by the uni-
tary matrix U∗

M
. Subsequently, one can also infer that the

unitary matrix V∗

M
diagonalizes not only the positive semi-

definite matrix D E�Dᵀ, but also DΣxD
ᵀ, i.e.,

U�
M

= UwΠ�
U

(8)

V�
M = UDΠ�

V (9)

where Π�
U

and Π�
V

are permutation matrices1 (c.f., [9]).
Using these optimal unitary matrices, the matrix opti-

mization problem reduces to a set of scalar optimization
problems that are concave in λMi

, i = 1, . . . , n for a fixed
permutation matrix; directly from the KKT conditions the
unique solution to the optimization problem is then:

λ�
Mi

=

⎧⎨
⎩
0, η ≥ g · λDi

λwπ�(i)

1

η
− 1

g
· λwπ�(i)

λDi

, η < g · λDi

λwπ�(i)

(10)

where η is such that
∑

λ�
Mi

= P and {π�(i)} denotes the
permutation induced by the matrix Π� = Π�

V
Π

�ᵀ
U

.
It is important to emphasize that one of the key ingredi-

ents in the measurement process relates to the alignment of
the source modes to the filter modes. Without loss of gener-
ality, we arrange the noise eigenmodes in order of ascending
eigenvalue. For two source and two noise modes, denoted
2 × 2, it is fairly straight-forward to prove that arranging the
source eigenmodes in descending order is optimal.

Consider anN×N scenario where the source eigenmodes
are sorted in descending order except for two elements, in-
dexed by i and j. These two elements are allocated power
P2 = Pi + Pj of the total power P. We view these two un-
ordered elements as a 2×2 scenario with power P2, exchang-
ing these two elements and allocating P2 optimally between
the two of them increases the mutual information2 If we start
from the case when the source eigenmodes are in descending
order, we can obtain any permutation by exchanging adjacent
elements to be in ascending order, this will always decrease
the maximum mutual information and therefore Π� = I.

4. OPTIMAL PROJECTION MATRIX: GENERAL
MULTIVARIATE SOURCE

We now consider the design of an optimal measurement ma-
trix for a general multivariate source; this could be a model
where all signals live on the same sub-space, as is often used
in communications, or it can represent a union of sub-spaces
model where signals live on different sub-spaces, such as the
GMM. The optimal solution for this scenario is based on a re-
cent result in information theory relating the gradient of mu-
tual information to the minimum mean squared error [5]. It is
stated in the following theorem:

Theorem 2. The optimal measurement matrix that solves (3)
for a general multivariate source with mean E {x} = 0 and
covariance E {xxᵀ} = Σx is (without loss of generality):

M� = UwΠ�diag
(√

λ�
Mi

)
U

�ᵀ
E

(11)

1The general solution for both matrices includes a post-multiplication by
diagonal matrices with unit modulus diagonal elements, however, we observe
that the MMSE matrix and mutual information are insensitive to them.

2This is a lower bound on the gain since the other N − 2 elements are no
longer necessarily allocated optimal power.
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where

λMi
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0,

η ≥ gλWπ�(i)
mmsei

(
. . . , λ�

Mi−1
, 0, λ�

Mi+1
, . . .

)
mmsei

−1

(
. . . , λ�

Mi−1
, η
g·λWπ�(i)

, λ�
Mi+1

, . . .

)
,

η < gλWπ�(i)
mmsei

(
. . . , λ�

Mi−1
, 0, λ�

Mi+1
, . . .

)
(12)

{π�(i)} denote the permutation induced by the optimal per-
mutation matrix Π�, η is such that

∑
λMi

= P, the i-th ele-
ment of the MMSE matrix is

mmsei
({λMj

}) := E
{|s′i − E {s′i|y′} |2} (13)

where y′ =
√
g ·Π�Λ

−
1
2

W
Π�ᵀΛM s′ +Π�Λ

−
1

2

w Uᵀ

ww, s′ =
U�

E
Dx, and its inverse with respect to the composition of

functions, in the argument λ�
Mi

with λMj
, ∀j �= i, fixed is

mmsei
−1(. . . , λMi−1 , (·), λMi+1 , . . .).

Proof. This details of the proof are omitted due to space con-
siderations, however, this is a generalization of Theorem 2
to include a general source covariance and builds on several
contributions [8] [3].

5. OPTIMAL ADAPTIVE PROJECTION MATRIX
DESIGN

The designs described thus far deal with one-shot designs for
the measurement matrix. In several scenarios, for example, in
the repetitive slices taken by MRI machines, it may be feasi-
ble to design the rows of the projection matrix sequentially,
taking into account measurements from the previous projec-
tions. At each iteration, the problem can be seen as a one-
shot problem with a new priori distribution on the source and
therefore we apply results in Section 3 and Section 4 at each
stage. There are, however, certain simplifications due to the
reduced dimensionality of the design.

Firstly, the noise is now a scalar and each row has unit-
norm, therefore U�

M
= 1 and λ�

M
= 1. The problem reduces

to selecting a vector from the eigenvectors of the MMSE ma-
trix, which are the only vectors that satisfy the KKT condi-
tions. For the Gaussian source, the optimal row vector m� is
the eigenvector associated with the largest eigenvalue of the
source covariance.

6. CONCLUSIONS

We observe that the design principle of maximizing mutual
information leads to deterministic projection matrices for
which MMSE performance is superior to that of random
Gaussian adaptation matrices. In particular, we are able to
provide design principles for the optimal projection matrix

for a general multivariate source. We showed that the optimal
measurement procedure exposes the modes of the noise and
the modes of the (optimal) MMSE matrix, then performs an
alignment operation whose purpose it to optimally match the
modes of the noise to the modes of the MMSE matrix (or,
in the multivariate Gaussian source scenario, the modes of
the source covariance). Finally, it carries out a generalized
mercury-waterfilling power allocation operation.

The visual depiction of the achievable gains were demon-
strated on the MNIST digital data set, where the implementa-
tion of the design principles were able to achieve better recon-
struction, in terms of both the perceived clarity of the images
and the reconstruction error.
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[5] D. Palomar and S. Verdú, “Gradient of mutual informa-
tion in linear vector Gaussian channels,” in IEEE Trans.
Inf. Theory, Jan. 2006, pp. 141–154.

[6] M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and
L. Carin, “Compressive sensing on manifolds using a
nonparametric mixture of factor analyzers: Algorithm
and performance bounds,” in IEEE Trans. Signal Pro-
cess., vol. 58, no. 12, Dec. 2010, pp. 6140 –6155.

[7] E. Candes and M. Wakin, “An introduction to compres-
sive sampling,” in IEEE Signal Process. Mag., vol. 25,
no. 2, 2008, pp. 21–30.
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