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ABSTRACT 
 
In this paper, a lossy data compression for a sparse 
histogram image signal is proposed. It is extended from an 
existing lossless coding which is based on a lossless 
histogram packing and a lossless coding. We introduce a 
lossy mapping, which has less computational load than the 
rate-distortion optimized Lloyd-Max quantization, and 
combine it with a lossless coding. It was confirmed that the 
proposed method attains higher performance in the rate-
distortion plane than existing methods. This is because it 
can utilize histogram sparseness of images, and also its 
inverse mapping does not magnify quantization noise. 
 

Index Terms— coding, lossless, histogram, image 
 

1. INTRODUCTION 
 
Recently, higher flexibility of image representations are 
required in advanced video technologies. The high dynamic 
range (HDR) pixel value representation is considered to be 
one of the most attractive approaches in this area. It has 
been crucial to compress its data volume to store and 
transmit since it consumes huge space of memory [1,2]. 

A pixel value in HDR has longer bit depth than a 
current standard (i.e. 8 bit per pixel which is equivalent to 28 
available tones for a pixel). In this case, the sparseness in 
histogram has been becoming a new point of view to be 
considered [3-5]. Due to huge variety of available tone slots, 
not all the bins in a histogram are utilized in general. It 
makes a histogram ‘sparse’. 

To make the most of this unique property of sparse 
histogram images, the histogram packing has been 
introduced [3]. It maps a set of original values into another 
set so that the sparse histogram becomes dense. It 
contributes to reduce data volume in combination with a 
lossless coding based a transform or a prediction [4,5]. 
However, it has been limited to ‘lossless’, so far. 

In this paper, we propose a ‘lossy’ data compression for 
sparse histogram images. A direct expansion is a 
combination of the lossless histogram packing and a ‘lossy’ 
coding such as JPEG 2000 and JPEG LS. When a lossy 
JPEG 2000 is utilized as the lossy coding, noise due to 

quantization of transformed coefficients is magnified by the 
inverse procedure of the histogram packing in a decoder. As 
a result, high quality of reconstructed images can’t be 
obtained.  

On the contrary, when a lossy JPEG-LS in near lossless 
mode is utilized, its rate control is limited to coarse and high 
PSNR at high bit rate can't be realized. This is because the 
prediction based near lossless coding has a constrain that the 
quantization step size must be an integer. 

In this paper, to attain both of high image quality and 
fine rate control, we introduce a ‘lossy’ mapping and 
combine it with a ‘lossless’ coding. In our method, any kind 
of coding algorithms such as JPEG 2000 based on an 
integer transform, and JPEG LS based on a prediction can 
be used as a lossy coding. 

As a lossy mapping, the local packing of histogram 
introduced in [6] can be a candidate as a rate optimized 
method. However it is not always optimum in the rate-
distortion sense. The Lloyd-Max quantization in [7] can be 
another candidate. However both of them are not adaptive 
to the histogram sparseness, and also they require heavy 
computational load to find the optimum solution. Unlike 
these methods, a lossy mapping used in this paper is quite 
simple to implement without degrading rate distortion 
performance of the Lloyd-Max quantization. 

In our experiments, we confirm that the proposed 
method attains higher performance in the rate-distortion 
plane than the existing methods. This is because it can 
utilize histogram sparseness of images, and also its inverse 
mapping does not magnify quantization noise. 
 

2. EXISTING METHOD 
 
A sparse histogram image discussed in this paper is defined. 
Existing methods and their problems are described. 
 
2.1. Sparse Histogram Image 
 
Fig.1(a) illustrates a histogram of a standard image ‘Lena’. 
Intensity of a pixel value x(n1,n2) at vertical location n1 and 
horizontal location n2 is represented with an 8 bit integer. 
This image does not use all the available 28 slots. Defining 
the histogram sparseness by 
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it has =95.2 [%] sparseness. In the equation, |X| denotes 
the cardinal number of a set X. In this case, it means the 
number of non-zero histogram bins. When we apply 
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to this image, its sparseness becomes =53.5 [%] for =1.8. 
In the equation, ‘Floor[p]’  means the largest integer not 
greater than p, and ‘HstEq’ means histogram equalization 
(We used ‘histeq’ function in MATLAB). This is an 
example of the ‘sparse histogram image’. 

In HDR representation, an image tends to be sparse in 
this sense due to its huge number of histogram bins. It often 
occurs by an image pre-processing such as a histogram 
modification, a tone mapping, a Gamma correction, an 
extraction of a region of interest, and so on. In this paper, 
we consider the histogram sparse image like this. 
 
 

 
             (a) =95.2, =1                   (b) =53.5, =1.8 

 
Fig.1  Histogram of an image ‘Lena’. 

 
 
2.2. Lossless Mapping and Lossless Coding 

 
The histogram packing introduced in [3] converts the sparse 
histogram into dense one. It maps a sparse set of original 
values x into a dense set of values y as 
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where M  denotes a mapping as an operation which holds 
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Even though this lossless mapping does not reduce the 1st 
order entropy itself, it does reduce data volume of sparse 
images when it is combined with a lossless coding as 
illustrated in Fig.2 [4,5]. However it has been limited to 
‘lossless’, and therefore the bit rate can't be controlled. 
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Fig.2  ‘Lossless’ encoding for sparse histogram images. 
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Fig.3  ‘Lossy’ encoding for sparse histogram images. 

 
2.3. Lossy Mapping and Lossless Coding 
 
Our purpose is to construct a ‘lossy’ coding for histogram 
sparse images. A direct expansion is a simple combination 
of a lossless mapping and a lossy coding as illustrated in 
Fig.3(a). When a transform is used in the lossy coding like 
JPEG 2000, quantization noise generated inside the lossy 
coding is magnified by the inverse mapping. It degrades 
reconstructed image quality.  

This case is detailed as below. A mapped signal y(n) is 
transformed by T , and quantized with a step size qm as  
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where ‘Round [p]’ means rounding to the integer nearest to 
p. It is reconstructed by  
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where e(m) denotes the quantization noise in transform 
domain. As a result, we have the reconstructed signal as  
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This means that the probability density function of the 
quantization noise e(m) in transform domain is scattered by 
the inverse transform T -1 .  
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Similarly, when a near lossless prediction is used like 
JPEG LS, we have a reconstructed image as 
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where e'(n) denotes the quantization noise in spatial domain. 
In both cases, the error is magnified by the inverse mapping 
M -1 . Therefore high quality reconstructed images can’t be 
obtained.  
 

3. PROPOSED METHOD 
 
A new lossy coding for sparse histogram image is described. 
It can utilize the histogram sparseness of images, and its 
mapping does not magnify the quantization noise. 
 
3.1. Lossy Mapping and Lossless Coding 

 
Fig.3(b) illustrates our coding scheme. We utilize a lossy 
mapping, and combine it with a lossless coding. In this case, 
we have the reconstructed signal as  
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and L  denotes a lossy mapping. Note that the noise e''(n) 
is generated in spatial domain by the mapping, and therefore 
the noise is not magnified by the inverse mapping.  
 
3.2. Weighted Median Cut Quantization (WMCQ) 

 
Procedure of the lossy mapping is detailed as below. Due to 
similarity to the median cut quantization, we refer to it as 
‘weighted median cut quantization (WMCQ)’. It reduces 2N 
kinds of tones for a pixel value x to L tones (2N >L), and it 
can utilize ‘sparseness’ of the histogram H(x). Forward 
mapping and backward mapping are performed with tables 
Q and R as 
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and therefore these tables should be prepared beforehand. 
 

Step 1. Calculate a histogram H(x) of integer pixel 
values x [0, 2N ). Note that not all the 2N bins but only Ne 
bins have non-zero values for a sparse image where Ne<2N. 

Step 2. To reduce the number of bins from 2N to L, if 
neighboring s non-zero bins are unify into one class for  
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there are still remaining Ne Ls =Nh non-zero bins. 

Therefore, unify s+1 bins into one for Nh(s+1) non-zero bins 
of H(x), and unify s bins into one for (L-Nh)s non-zero bins. 
This simple procedure fully utilizes the histogram 
sparseness of input images. 

Step 3. Calculate the tables Q and R in (11) as below. It 
unifies s+1 bins for the first Nh classes, and unifies s bins 
for the rest L-Nh classes as an example. 
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indicates location of non-zero bins in the original histogram. 

The table Q is used to quantize 2N original pixel tones 
into L tones considering histogram sparseness. The right-
hand side of (15) calculates center of mass of each bin in the 
histogram. It is rounded and used in the decoder. 

 
 

4. EXPERIMENTS 
 
Computational load of WMCQ is examined, and the three 
methods in Fig.3 are compared. 
 
4.1. Computational Load 
 
Table I summarizes computational time for quantization 
from 212 tones to 2B tones. It compares the Lloyd-Max 
quantization in [8] and the WMCQ described in 3.2. It was 
evaluated on a 2.8 GHz Core Duo computer with MATLAB. 
As a result, the ‘WMCQ’ was observed to be faster than the 
‘Lloyd-Max’. 

 
 

Table I  Computational time for quantization [m sec]. 
bit depth  B 1 2 3 4 5 6 7 8 9 10 11
Lloyd-Max 28 72 73 134 218 230 159 25 18 23 23

WMCQ 15 13 13 13 13 13 13 15 14 14 17
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4.2. Performance in Rate-Distortion Plane 
 

Fig.4(a) compares the three methods in Fig.3 for a 16 bit 
depth (216 available tones) image ‘Cafe’. It was indicated 
that ‘Proposed 2K’ with lossless JPEG 2000 (2K) and 
WMCQ in Fig.3(b) is the best of all, followed by ‘JPEG 
2K’ with the 5/3 wavelet and the bit truncation in Fig.3(c). 
‘Packing+JPEG 2K’ with the histogram packing [3] and the 
lossy JPEG 2K in Fig.3(a) was observed to be the worst. 

In Fig.4(b), ‘JPEG LS’ and ‘Proposed LS’ was observed 
to be almost the same. However, the rate control of 
‘Proposed LS’ is fine. It makes it possible to smoothly 
control at bit rates higher than 9.5 [bpp].  

Fig.5 summarizes the results for a 12 bit depth medical 
‘CT image’. For this ‘sparse’ image ( =45.0%), superiority 
of the ‘Proposed’ at lossless point (PSNR= ) was 
confirmed. It utilizes the histogram sparseness for data 
compression. Furthermore, unlike the ‘JPEG LS’, the 
‘Proposed LS’ can control bit rates higher than 5.9 [bpp]. 
 

5. CONCLUSIONS 
 

We extended the histogram packing from lossless to lossy, 
and combined it with a lossless coding. In our experiments, 
JPEG 2000 or JPEG LS international standard was used as 
the lossless coding, and the weighted median cut 
quantization was introduced as the lossy mapping. It was 
confirmed that the proposed method is the best in PSNR for 
JPEG 2000 case, and the proposed method realizes smooth 
rate control at high bit rates for both of JPEG 2000 and 
JPEG LS cases. 
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Fig.4  Rate distortion curves of a dense image. 
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Fig.5  Rate distortion curves of a sparse image. 
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