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ABSTRACT
Discrete Sine Transforms of types VI and VII (DST-VI/VII)

have recently received considerable interest in video coding.

In particular, it was shown that DST-VII offers good approxi-

mation for KLT of residual signals produced by spatial (Intra)

prediction process. In this paper, we offer an additional argu-

ment for use of such transforms by showing that they allow

fast computation. Specifically, we establish a mapping be-

tween N -point DST-VI/VII and an 2N + 1-point Discrete

Fourier Transform (DFT), apply known factorization tech-

niques for the DFT, and show how unused parts of the re-

sulting flowgraph can be pruned, producing factorizations of

DST-VI/VII.

Index Terms— Video coding, intra prediction, sinusoidal

transforms, DCT, DST, DST-VII, DFT, FFT, factorization,

multiplicative complexity.

1. INTRODUCTION

The Discrete Cosine Transforms of types II and IV (DCT-

II/IV) are among fundamental, well understood, and much ap-

preciated tools in data compression. The DCT-II is used at the

core of standards for image and video compression, such as

JPEG, ITU-T H.26x-series, and MPEG 1-4 standards [2]. The

DCT-IV is used in audio coding algorithms, such as ITU-T

Rec. G.722.1, MPEG-4 AAC, and others [3]. Such transforms

are very well studied, and a number of efficient technique ex-

ists for their computation [2, 4, 5, 6, 7, 8].

Much less known is are so-called ”odd” sinusoidal trans-

forms: Discrete Cosine and Sine Transforms of types V, VI,

VII, and VIII. Existence of some of such transforms was dis-

covered by A. Jain in 1979 [11]. A complete tabulation was

developed later by Wang and Hunt [12]. However, not much

work has followed. Surveys of related results can be found

in [13, 4].

Nevertheless, DST of types VI and VII have recently sur-

faced as useful tool in image and video coding. Thus, Han,

Saxena, and Rose have shown that DST-VII produce good ap-

proximations of Karhunen-Loeve Transform (KLT) for model
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of residual signals after Intra-prediction [1]. This was sub-

sequently validated in the course of experimental work on

ISO/IEC/ITU-T High Efficiency Video Coding (HEVC) stan-

dard [14, 15, 16]. The adoption of DST-VII in HEVC has also

prompted a discussion on the existence of fast algorithms for

computing of such transforms [14].

The purpose of this paper is to show that fast algorithms

for computing DST-VI/VII indeed exist, and offer general

technique for their construction. Next section contains def-

initions. Section 3 establishes mapping between N -point

DST-VII and 2N + 1-point DFT. Section 4 describes our

proposed method for construction of fast factorizations of

DST-VII. Examples of fast factorizations of DST-VI/VII of

lengths N = 4, 8 are also provided in Section 4.

2. DEFINITIONS

Hereafter, by N we will denote the length of input data se-

quence, by � (.) and � (.) we will denote real and imaginary

parts of complex numbers, and by j =
√−1 we will denote

imaginary unit.

Let x = x0, . . . , xN−1 be a sequence of real numbers

(input signal). The Discrete Fourier Transform (DFT) over

sequence x will be defined as1:

XF
k =

N−1∑
n=0

xne
−j 2πkn

N ; k = 0, . . . , N − 1.

The Discrete Sine Transform of types VI and VII (DST-

VI/VII) over x will be defined as follows:

XV I
k =

N−1∑
n=0

xn sin
π(2n+ 1)(k + 1)

2N + 1
, k = 0, . . . , N − 1 ,

XV II
k =

N−1∑
n=0

xn sin
π(2k + 1)(n+ 1)

2N + 1
, k = 0, . . . , N − 1 .

We immediately notice, that DST-VII is simply a trans-

pose of DST-VI, and so finding factorization for either one of

them will be sufficient to show how to factorize both.

1For simplicity, we omit all normalization factors.
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3. MAPPING BETWEEN DST-VI/VII AND DFT

In this section we will prove the following statement.

Theorem 1. Let x = x0, . . . , xN−1 be a real-valued input
sequence. Define an intermediate 2N+1-point sequence y =
y0, . . . , y2N as follows:

yn = 0, n = 0, . . . , N,
yN+1+n = x2n, n = 0, . . . ,

⌈
N
2

⌉− 1,
y
N+1+

⌈
N
2

⌉
+n

= x
2
⌊
N
2

⌋
−1−2n

, n = 0, . . . ,
⌊
N
2

⌋− 1,

and compute DFT over it

Yk =
2N+1∑
n=0

yne
−j 2πkn

2N+1 ; k = 0, . . . , 2N.

Then:

XV II
k = � (Y2k+1) , k = 0, . . . , N − 1. (1)

is the DST-VII over x.

Proof. Let’s take a look at DFT outputs (k = 0, . . . , N − 1):

� [Y2k+1] = −
2N∑
n=1

yn sin
2π(2k + 1)n

2N + 1

= −
N∑

n=1

[
yn sin

2π(2k + 1)n

2N + 1

+ y2N+1−n sin
2π(2k + 1)(2N + 1− n)

2N + 1

]
.

Since further yn = 0, n = 1, . . . , N , we have

� [Y2k+1] =
N∑

n=1

y2N+1−n sin
π(2k + 1)(2N + 1− 2n)

2N + 1

=
N∑

n=1

y2N+1−n sin
2π(2k + 1)n

2N + 1
,

or by using substitution n′ = N − n:

� [Y2k+1] =
0∑

n=N−1

yN+1+n sin
π(2k + 1)(2n+ 1)

2N + 1
.

Let’s now assume that N is even. Similar argument holds

for odd N . We write

� [Y2k+1] =

N
2 −1∑
n=0

yN+1+n sin
π(2k + 1)(2n+ 1)

2N + 1

+

N
2 −1∑
n=0

y 3N
2 +1+n sin

π(2k + 1)(2n+N + 1)

2N + 1

Fig. 1. Flow-graph of proposed mapping between N -point

DST-VII and 2N + 1-point DFT, drawn when N is even.

where, based on our input mapping, the first sum receives

quantities yN+1+n = x2n, while the second sum receives

y 3N
2 +1+n = xN−1−2n.

By putting these facts together, we obtain

� [Y2k+1] =

N
2 −1∑
n=0

x2n sin
π(2k + 1)(2n+ 1)

2N + 1

+

N
2 −1∑
n=0

xN−1−2n sin
π(2k + 1)(2n+N + 1)

2N + 1

=

N
2 −1∑
n=0

x2n sin
π(2k + 1)(2n+ 1)

2N + 1

+

N
2 −1∑
n=0

x2n+1 sin
π(2k + 1)((2n+ 1) + 1)

2N + 1

= XV II
k .

We show the flow-graph of mapping (1) in Figure 1. It can

be observed that DST-VII can be computed by simply produc-

ing particularly re-ordered and zero-padded sequence as input

1346



Fig. 2. Fast factorization of DST-VII of length 4.

to DFT, and collecting imaginary parts of odd-indexed DFT

output values. In next section, we show that this process can

be further simplified by ”pruning” DFT flow-graph such that

only paths necessary for computing of DST-VII output values

are remaining.

4. FAST ALGORITHMS FOR COMPUTING
DST-VI/VII OF LENGTHS N=4,8

Based on previous discussion, it follows that DST-VII trans-

form can be constructed by following these steps:

• Use mapping between DST-VII and DFT;

• Select fast factorization of DFT of length 2N + 1;

• Prune flow-graph of the DFT, leaving only paths lead-

ing to odd-indexed imaginary values, corresponding to

outputs of DST-VII.

This produces the flow-graph for DST-VII. By reversing the

direction we obtain flow-graph for DST-VI.

We now show how these steps can be carried out for con-

struction of fast transforms of length N=4. We start with map-

ping (1). Then, we pick fast factorization of DFT of length 9.

In this case, we use Winograd’s DFT module of length 9 de-

scribed in [17, 18]. We show flow-graph of this algorithm in

Figure 3. We use red color to show paths that are needed for

computation of DST-VII. It can be easily observed that the re-

maining paths are irrelevant because they either receive zero

input, or lead to real portion of DFT’s output. Final flow-

graph for computing DST-VII is show in Figure 2. Based on

Figure 2 we can see that DST-VII of length 4 can be com-

puted by using only 5 multiplications and 11 additions. Same

complexity is required for computing DST-VI of length 4.

Same steps can also be repeated for construction of fast

transforms of length N=8. In this case, we can use 17-point

Winograd DFT module described in [18, 19]. We show the

final flow-graph of length-8 DST-VII in Figure 4. This trans-

form requires 21 multiplications and 77 additions.
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