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ABSTRACT

Most supervised classification approaches try to learn patterns in in-
ter class variabilities using training samples. However in the real
world, their discriminative power is often diminished, because data
is seldom free from irregularities within a class. Apriori modeling
of these intra class variabilities poses a challenge even in underwa-
ter sidescan sonar images that we consider for object classification in
this work. Sparse representation techniques prove particularly useful
in this regard because of their data driven approach to model these
variabilities. Results on the NSWC sidescan sonar database suggest
that sparse representation classifier with zernike magnitude features
is significantly robust in the presence of these non-idealities.

Index Terms— Sparse Representation, Sidescan Sonar, Zernike
moment, Object classification

1. INTRODUCTION

Object classification is often riddled with problems of data sparsity
like most other pattern recognition paradigms. In recent years, this
has led to discriminative techniques that are gaining increasing pop-
ularity. Discriminative methods focus only on the inter class differ-
ences by directly modeling the class posterior probabilities. Hence,
these methods are attractive in terms of reduced number of parame-
ters and required training data. They work well as long as the vari-
abilities within a class are not significant. However more often than
not, this poses issues on a real dataset. Various factors beyond the
control of the experiment can introduce these intra class variabilities
which now compete with inter class variabilities leading to a reduc-
tion in the discriminative power of the classifier. This makes robust
object classification a challenging task.

In our current target application domain of underwater sides-
can sonar images, this problem is indeed quite severe. Sidescan
sonar imagery can provide high resolution images of the sea floor.
This makes it invaluable to applications like mine-countermeasure
(MCM) where speed is a key factor. While sidescan sonars allow
large portions of the seabed to be scanned at once, the objects of
interest in these images are usually very difficult to detect. These
objects sitting camouflaged on the sea floor, are often difficult to
notice except for the faint trace of a characteristic shadow adjacent
to a bright highlight region (Figure 1). Additionally sidescan sonar
images are very sensitive to the grazing angle, which can make the
same underwater object appear completely different depending on
its surrounding scene. These and other factors like texture of the ob-
ject and characteristics of the medium cause significant differences
in patterns within the class.
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Fig. 1. A sample object (circled) in a partial sidescan sonar image
with its shadow to the right.(A colormap has been added to the orig-
inal grayscale image for ease of viewing.)

Since classical supervised approaches do not adequately per-
form on these datasets, there have been attempts to use knowledge
specific to sidescan sonars. There has been ample work for exam-
ple on extracting the object’s shadow and computing features based
on its shape [1]. A variety of machine learning techniques have
also been employed to improve the adaptability of the algorithms
to unseen features in the test data. These include methods like active
learning [2] and classifier fusion [3]. But in spite of such advanced
methods, the false alarm rate is generally quite high. This might still
be acceptable as long the false negatives are controlled. Typically de-
tection is therefore followed by a second classification stage, where
the detected object is further classified e.g. as a mine or a non-mine.
Some of these works have tried to push the bar even higher by trying
to further classify the detected object according to its shape [4]. If
the object of interest is a mine this extra information might in some
cases provide insight into ways of neutralizing the threat.

In this work we discuss an approach to solve the latter object
classification problem using sparse representation methods. These
methods come under the broad category of non parametric methods;
this class of supervised methods does not compute any parameters or
train any models from the data. This stems from their rather skeptical
view that any model will have its own assumptions on the underly-
ing distributions and hence limitations. Therefore instead of trying
to compute a sufficient statistic from the features, it is safer to use
the entire set of features during classification. Eccentric as it might
sound, these methods are usually flexible enough to capture much
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of the variation in real data. Sparse representation methods specifi-
cally exploit the fact that all samples from one class are essentially
distortions of a golden exemplar, and hence must lie on a lower di-
mensional subspace. In the context of underwater objects this would
mean that features from objects of the same class in spite of their
intra class differences, would share a common subspace, which can
be exploited for classification. We discuss this in detail in Section 3.

A description of the dataset and the classification problem is pro-
vided in Section 2 followed by details on feature choice in Section
4. In Section 5 we discuss the different experimental procedures and
their results followed by concluding points in Section 6.

2. PROBLEM DESCRIPTION

The sidescan sonar image database used for this work was collected
at the Panama City Division of the National Surface Warfare Center
(NSWC). The field of view in sidescan sonar images is typically to
two sides of the vehicle. The dataset accordingly contains a number
of pairs of left and right sonar images. Each of these 8 bit grayscale
images contain one or more synthetic mine-like objects under differ-
ent types of sea floor environments. Each of these objects is approx-
imately 10-20 pixels in diameter and can be of four different types,
based on the shape (Figure 2). The dataset additionally contains
ground truth labels on object type and location. This work deals
with the problem of this object classification, given that the object
location has already been detected by one of the existing algorithms
mentioned above.

Fig. 2. The four types of object in the NSWC sidescan sonar
database

3. SPARSE REPRESENTATION FOR CLASSIFICATION

The fundamental idea in this method is loosely similar to subspace
models. Sparse representations as we will see, are merely a method
to unmask this inherent subspace structure in the data, so that it can
be exploited for classification.

3.1. Subspace Models

Subspace models assume that samples from a single class lie on a
lower dimensional linear subspace. In fact given sufficient training
data from each of the class it should be possible to represent any test

sample as the linear combination of training samples from its class.
For example if {x(k)

i }ni=1 be training samples for object k and y(k)

be a test sample from the same class then y(k) will approximately lie
in the span of the above training samples.

y
(k) =

n∑

i=1

αix
(k)
i (1)

for some real scalars αi

In the context of object recognition these subspace assumptions
have been studied in depth for objects under various lighting and
illuminations [5]. When applied to face recognition these are usually
called face subspaces and have been shown to capture variations in
expressions [6].

Given that this assumption holds, we now construct a dictionary
A consisting of all training samples from all classes. For classifying
a test sample y we would like to now exploit the fact that y can be
represented as the sparse linear combination of a few rows of A (the
ones containing samples corresponding to the object k). In other
words if we write y as follows

y = Av (2)

then v should be a sparse vector with only a few non zero values.
To ensure sparsity of v, this can now be posed as a constrained min-
imization problem where we try to find the vector v with the min-
imum norm which also satisfies Equation 2. Typically, Equation 2
is seldom used as an equality constraint. It is usually reduced to
an L2 norm of the reconstruction error which is jointly minimized
(Equation 3).

Choosing the kind of norm for v is crucial here. Minimizing the
L2 norm for example has been shown to return non-sparse solutions.
On the other hand seeking the sparsest solution would require us to
minimize the L0-norm which counts the number of non zero entries
in v. This problem however is combinatorial in nature, and consid-
ered computationally infeasible. The more commonly taken middle
road is that of minimizing the L1 norm. There exists some evidence
that given the v is sparse enough, the solution to the L1 minimization
problem approaches the solution to the L0 minimization problem [7].

3.2. Classification Methodology

For the sparse representation approach, as a baseline, we adopt the
LASSO algorithm [8]. We choose this algorithm because of its
prevalent usage and robust performance in most circumstances. The
LASSO formulation can be written as follows:

min ||y − Av||22 + λ1||v||1 (3)

It has however been demonstrated experimentally in speech
recognition that collinearity of spectral exemplars in the dictionary
leads to deterioration of the performance of LASSO [9]. An im-
provement can then be obtained in this respect by use of the Elastic
Net algorithm [10], which better handles the situation of an incoher-
ent dictionary. The Elastic Net algorithm is given by the following
optimization formulation:

min ||y − Av||22 + λ1||v||1 + λ2||v||2 (4)

where ||.||1 and ||.||2 are L1 and L2 norms respectively
We observe that Equation (4) is a more general form of the

LASSO formulation in Equation (3). In particular, if we set λ2 = 0,
we obtain back the LASSO formulation. An alternative interpreta-
tion exists in terms of the priors.The LASSO can be thought of as
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having only a Laplacian prior, while the elastic net is a mix between
a Laplacian prior and a Gaussian prior.

We adopt the Least Angle Regression (LARS) [11] implementa-
tion of both the LASSO and the Elastic Net algorithm in this paper.
LARS being a greedy approach, allows us to control sparsity more
efficiently.

4. FEATURE SELECTION

The role of feature extraction in pattern recognition problems is usu-
ally considered to be paramount. The general consensus seems to be
that there is no best feature for a problem. The common approach
has been to find features tuned to particular datasets, and it is no
different in the domain of underwater sonar images [12].

It is interesting to see that works on sparse representation have
taken a different route here. Applications to problems like face
recognition have shown that given certain sparsity conditions, fea-
ture extraction ceases to play any major role in classification [6].
Given that the vector v is sparse enough (which is usually the case if
the dictionary A can be made sufficiently overcomplete) even ran-
dom features contain enough discriminative power to recover the
correct sparse representation and hence the classification [13][14].

4.1. Polar Features

We decided to test this on two sets of features. We noticed that there
still was a substantial amount of clutter around the object. Since
the ground truth on location is available in the dataset and also not
relevant to the classification problem at hand, we use it to compute
polar domain features on images centered around the object.

The first feature simply uses raw pixel values in radial bins
around the object center. We sum these pixel values in 100 uni-
formly quantized angle bins θ, across the radial direction for the first
10 radial pixel bins as follows.

P (θ) =
10∑

ρ=1

I(ρ, θ) (5)

where I(ρ, θ) is the object image transformed to polar coordinates
computed for angular bins θ = 1 . . . 100. P (θ) is the 1-D feature
which now approximately captures the shape of the object. We refer
to these simply as the polar features. To make these features rotation
invariant we also test shift invariant transforms of P (θ) using the
circular auto correlation function.

4.2. Zernike Moments

The second feature is computed from Zernike moments of the im-
age. Zernike moments of an image are computed via an orthogonal
transform in the polar domain, where the degree of the representation
controls the degree of generalizability. We use magnitudes of zernike
moments which have been shown to have rotational invariance prop-
erties for object recognition [15]. Their robustness to variabilities in
underwater images has also been well established [16][17]. To com-
pute zernike moments Anm of order (n,m), we find its projection
with the basis function Vnm(x, y) as follows

Vnm(x, y) = Vnm(ρ, θ) = Rnm(ρ)e−jmθ (6)

Rnm(ρ) =

n−|m|
2∑

s=0

(−1)s
(n− s)!

s!(n+|m|
2

− s)!(n−|m|
2

− s)!
ρ
n−2s (7)

Anm =
n+ 1

π

∑

x

∑

y

f(x, y)V ∗
nm(ρ, θ), x2 + y

2 ≤ 1 (8)

where the index n is constrained to be a positive number or zero,
while m can take positive or negative integer values subject to the
constraints that n − |m| is even and |m| ≤ n. The range of n se-
lects the order of zernike moments and the degree of generalizability
of the description. We conduct experiments for different orders of
zernike moments.

5. EXPERIMENT AND RESULTS

Once the sparse representation is computed by solving the optimiza-
tion in Equation 4, classification is done using a simple heuristic.
The magnitudes of coefficients are summed for each class that the
corresponding atoms belong to. The test sample is classified as be-
longing to the class which has the maximum coefficient weight. For
example in Figure 3 the classification result would be class 4 because
it accumulates the maximum coefficient weight.
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Fig. 3. Demonstration of the classification heuristic for a sample
sparse representation computed on an overcomplete dictionary com-
prising 196 atoms.

We extract 296 objects from the dataset using the ground truth
on location. The number of samples from each of the four classes
was 79, 90, 83 and 44. For various comparison points we compare
against standard linear classifiers like SVM, Logistic Regression and
Naive Bayes using the same set of features. For the dataset of 296
objects, we perform 4-fold cross-validation. Our training data hence
comprises 222 objects and test data 74 objects. WEKA [18] imple-
mentations were used for all three linear classifiers.

NBayes LReg SVM L1 E-Net
Polar 90.5 94.9 95.2 74.7 90.5
Correlation 46.3 81.4 70.3 50 72
Zernike[n ≤ 10] 91.2 93.6 95.9 87.5 96.6

Table 1. Object classification accuracies for a 4-fold cross validation
for different features and classifiers

(NBayes: Naive Bayes LReg : Logistic Regression SVM : Support Vector
Machine L1 : Lasso E-Net : Elastic Net)
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The results in Table 1 show that the Elastic Net is significantly
more robust than LASSO for the object classification task, and is
also significantly more robust than the other machine learning algo-
rithms we tested on. This testifies to the strength of the Elastic Net
in dealing with collinear feature vectors extracted from the sidescan
sonar images.

We also observe that the sparse representation classifier in our
current framework is in fact sensitive to the choice of features. This
maybe because the dictionary was not overcomplete enough due to
insufficient training data or choice of number of feature dimensions.
Autocorrelations of the polar features in spite of their rotation invari-
ance don’t seem to have much discriminative power. This is most
likely because they are a many to one mapping from the set of po-
lar features. We additionally note that the optimum order of zernike
moments here agrees with the observation in our previous work [17].
36 coefficients for 10th order zernike moments capture just enough
information for classification without over fitting to the samples.

6. CONCLUSION

In this paper we propose a method to deal with the intra class vari-
abilities of objects in a sidescan sonar image for object classifica-
tion. Training samples from each class form a lower dimensional
subspace which is closest to the samples from that class. Sparse
representation exploits this inherent structure to provide a discrim-
inative ability without an explicit training. Results on the NSWC
sidescan sonar database suggest that the method is robust in pres-
ence of variabilities.

In future work we would like include non-mine as one of the
classes. This might be possible because prior work on similar out
of vocabulary sparse representations, suggest that if the test sample
does not belong to any of the classes in the dictionary the obtained
representation will fail to be sparse. It maybe be helpful to think of
a metric in that case to measure the degree of sparsity of v. Simi-
lar extension to metrics to measure the confidence of classification
should also be interesting in this case.
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