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ABSTRACT 

The discriminative common vectors (DCV) algorithm shows 
better face recognition effects than some commonly used 
linear discriminant algorithms, which uses the subspace 
methods and the Gram-Schmidt orthogonalization (GSO) 
procedure to obtain the DCV. However, the Gram-Schmidt 
technique may produce a set of vectors which is far from 
orthogonal so that sometimes the orthogonality may be lost 
completely. Hence, the effectiveness of the DCV is also 
decreased. In this paper, we proposed an improved DCV 
method based on the GSO. For obtaining an accurate 
projection onto the corresponding space, the orthogonal 
basis problem is usually solved with the Gram-Schmidt 
process with reorthogonalization. Thus, the effectiveness of 
the DCV can be improved and the experimental results 
show that the proposed method is better for the small sample 
size problem as compared to the DCV. 
 

Index Terms— Face recognition, Discriminative 
common vector, Gram-Schmidt orthogonalization 
 

1. INTRODUCTION 

Small sample size (SSS) problem often presents in the 
pattern recognition filed, especially in image recognition 
problem. In general, image capture for enough samples is 
often difficulty in practical environment, such as face image, 
finger image and signature and so on. However, even if we 
obtain these images, the sample size is often small and only 
2 or 3 samples are in each class [1]. Most of the statistical 
methods suffer from this problem. In order to do research on 
the SSS problem, we often use affine transformation to 
expand the samples, which includes translation transform, 
scaling transform, shear transform and rotation transform. 
Then, we do the recognition on the expended samples. 

Recently, the common vector was proposed and 
originally introduced for isolated word recognition problems 
in which the number of samples in each class was less than 
or equal to the dimensionality of the sample space [2]. The 
common vector presents the common properties of a 
training set [3]. Inspired by this idea, Cevikalp et al. [4] 
proposed the discriminative common vectors (DCV) for 
face recognition, which uses the subspace methods and the 

Gram-Schmidt orthogonalization (GSO) procedure to obtain 
the DCV, and shows better face recognition effects than 
some commonly used linear discriminant algorithms. 
However, it was confirmed by many numerical experiments, 
that the classical GSO may produce a set of vectors which is 
far from orthogonal and sometimes the orthogonality can be 
lost completely [5], [6]. Nevertheless, despite its weakness, 
this technique is frequently implemented due to its 
simplicity and potential parallelism. As we know, the 
orthogonality of the computed vectors is essential for 
obtaining an accurate projection onto the corresponding 
space [7], [8]. If the projection vectors in the difference 
subspace are not orthogonal, the DCV obtained by the 
common vectors GSO procedure are also not optimal. Yet, 
to solve the SSS problem, the expanded samples are 
obtained by the affine transformation in our paper so that the 
linear correlation between the samples is unavoidable. To 
obtain the orthogonal vectors in these expanded samples, 
researchers proposed the modified Gram-Schmidt (MGS) 
[9], modified Gram-Schmidt with pivoting (MGS-Pivot) [10] 
and iterative Gram-Schmidt orthogonalization [11]. 

In this paper, we proposed an improved the DCV using 
an iterative GSO to obtain the orthogonal projective vectors 
in the difference subspace so that the DCV’s effectiveness 
can be improved. Experiments show that the performance of 
the proposed algorithm is the same as that of the DCV when 
the columns of the subspace have linear independency, 
while the performance of the proposed algorithm is better 
than that of the DCV when the columns of the subspace 
have linear correlation. This paper is organized as follows. 
In Section 2 an improved DCV based on the Gram-Schmidt 
reorthogonalization is described. Experimental results on the 
ORL and AR face database are shown in Section 3. Finally, 
the conclusion is given in Section 4. 
 
2. DISCRIMINATIVE COMMON VECTORS BASED 
ON THE GRAM-SCHMIDT 
REORTHOGONALIZATION 

2.1 Discriminative common vectors  

The DCV method is based on a variation of Fisher’s 
Linear Discriminant Analysis for the small sample size 
cases. Two different algorithms were given to extract the 
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DCV representing each person in the training set of the face 
database. One algorithm uses the within-class scatter matrix 
of the samples in the training set, while the other uses the 
subspace methods and the GSO to obtain the DCV. In this 
paper, we focus on the DCV based on the difference 
subspace and the GSO procedure. 
    Let a training set be composed of C class, where each 
class contains N samples, and let  xm

i  be a d-dimensional 
column vector which denotes the mth sample from the ith 
class. There will be a total of M=NC samples in the training 
set (suppose that d>M-C). In the DCV, the subspace 
methods can be applied to obtain the common vectors xcom

i  
for each class i. We chose any one of the image vectors 
from the ith class as the subtrahend vector, and then 
obtained the difference vectors  bk

i of the so-called difference 
subspace of the ith class. Thus, assuming that the first 
sample of each class is taken as the subtrahend vector, we 
have 
   bk

i = xk+1
i − x1

i , k = 1,..., N −1                                               (1) 

The difference subspace  Bi  of the ith class is defined 

as  Bi = span{b1
i ,...bN−1

i } . These subspaces can be summed up 
to form the complete difference subspace as defined below: 

  
B = B1 + ...+ BC = span{b1

1,...,bN1−1
1 ,b1

2 ,...,bNC −1
C }

                
(2) 

The GSO is used to obtain orthonormal basis vectors to 
locate the projection matrix onto B. However, we notice that 
the difference subspace B, when its det(B’B) is close to zero, 
the orthogonality of the computed vectors may be 
significantly lost in the GSO algorithm [5], [6]. If the 
projection vectors in the difference subspace are not 
orthogonal, the common vectors may be deviated. The DCV 
obtained by the common vectors Gram-Schmidt procedure, 
which are important for the face recognition results, are sub-
optimal. In the following subsection, we analyzed the loss of 
orthogonality in the GSO. 

2.2 Gram-Schmidt reorthogonalization (GSR) 

In this section, we present a brief description of the GSO 
process. Assume we have a set A = {ai | i = 1,2,..., n}of m-
vectors and wish to obtain an equivalent orthonormal set 
Q = {qi | i = 1,2,..., n}of m-vectors. (Table 1) 

Table 1 The GSO and GSR. 
GSO GSR 

 
for  j=1->n  do 

  

w = (Im− Qj−1Qj−1
T )aj

q j = w / w
 

end for 

for  j=1->n  do 

 
w = aj  

for r=1->2 do 

  
w = (Im − Qj−1Qj−1

T )w
 

end for 
qj = w / w  

end for 

In general, the loss of orthogonality (LOO) of vectors Q 
computed in the GSO can be bounded as [5]: 
|| I − Q 'Q ||≤ γεκ ( A)                                                           (3) 

Where  is a constant that depends only on the details of 
the computer’s arithmetic, then ε  is the machine precision 
(or unit round-off) and κ ( A)  is the condition number of 
matrix A. The bound on the LOO of computed vectors is 
proportional to   κ ( A) .  

If the determinant value of A’A, det(A’A) is close to zero, 
the inverse of the A’A, det(A’A) will be extremely inflated, 
and in consequence the solution analysis will have poor 
robustness and low precision. In this case, matrix A can be 
regarded as ill-conditioned. The ill-conditioned matrix 
results from linear correlation among columns in the A 
matrix. For ill-conditioned matrices, the computed vectors 
can be very far from orthogonal.  

Let us present an example to show the LOO of the Gram-
Schmidt algorithm. A Hilbert matrix is a typical ill-
conditioned matrix and is defined as:  

  
A = (aij ) = 1 / (i + j −1); i, j = 1,2,..., n                               (4) 

Let A be the 12 x 12 Hilbert matrix: 

   

A = hilb(12) =

1 1/ 2 ... 1/ 12
1/ 2 1/ 3 ... 1/ 13

1/ 12 1/ 13 ... 1/ 23

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

                            

(5)  

We have k(A)=3.8e+16. With the GSO, we get 

  || I − Q 'Q || =8.9, so Q is far from being orthogonal. In 
general, computation in floating-point arithmetic implies 
round-off errors. These errors in the GSO may lead to a 
severe LOO in the Q-factor. In theory, if all vectors are 
orthogonal, the value of   || I − Q 'Q || is close to zero. The 
projection vectors of the Hilbert matrix obtained by the 
classical GSO are not completely orthogonal.  
    However, it is important to compute the vectors Q so that 
their orthogonality is close to the machine precision level. 
The orthogonality of the computed vectors is essential for 
obtaining an accurate projection onto the corresponding 
space [7], [8]. In general, the orthogonal basis problem is 
usually solved with the GSR. Theoretically, 
reorthogonalization could be applied several times, but in a 
practical application, one reorthogonalization of a current 
vector against the previously computed set is performed 
exactly twice [6]. In the right column of Table 1, the GSR is 
presented. The difference between the GSO and GSR lies in 
the computation times of the orthogonal vectors. 

With the Gram-Schmidt algorithm iterated twice on the 
above Hibert matrix, we get || I − Q 'Q || =2.9e-16 which is 
close to zero and far less than 8.9 obtained by the Gram-
Schmidt algorithm. Hence, the orthogonalizaion of the 
Gram-Schmidt algorithm could be solved by the Gram-
Schmidt iteration algorithm.  

We then analyzed the selective reothogonalization 
criterion. The Gram–Schmidt algorithm has computed 
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matrices Q and R that satisfy a bound of the form: 

  
A− QR ∼ γε A                                                                (6) 

where ε  denotes the machine precision (or unit round-off) in 
our computations and  is a constant that depends on the 
dimension of Q and the details of the arithmetic. This 
property is always maintained in the Gram-Schmidt 
algorithm.  

At step j of the Gram-Schmidt algorithm, we compute w 
such that w = (Im − Qj−1Qj−1

T )aj . In floating-point arithmetic, 
we compute   w  such that  

   
w = (Im − Qj−1Qj−1

T )aj + e                                                    (7) 

where 
  
e ∼ γε aj . This gives  

   
Qj−1

T w = Qj−1
T e                                                                      (8) 

Computing 
   
q j = w / w  leads to  

   
Qj−1

T �qj ∼ γε aj w( )                                                       
(9) 

At step j, the quantity 
 

a j w
 
clearly controls the LOO 

  
q j  against

  
Qj−1 . When

 
a j w < K , then the 

reorthogonalization procedure ends. In general, K is defined 
as   1≤ K ≤κ ( A)  [12]. 

In this paper, we proposed the DCV using the GSR for 
face recognition. The procedure is as follows:  
Step 1: Calculate the range space of the within-class matrix, 
which is identical to the range space of the difference 
subspace B. Here, B is defined as 

  
B = [b1

1,...,bN1−1
1 ,b1

2 ,...,bNC −1
C ]

                                             
(10) 

where 
  
bj

i = x j
i − xNi

i , i = 1,...,C, j = 1,..., Ni −1 is the jth 

difference vector of the ith class. For B, apply the GSR 
procedure and set a reothogonalization criterion, and then 
get  B = UV . Then, U is an orthonormal matrix whose 
column vectors span the range space of the within-class 
matrix. 
Step 2: Choose any sample from each class (typically, the 
last sample of the ith class 

 
xNi

i ) and project it to the null 

space of the within-class matrix through the following 
equation 

  
xcom

i = x j
i −UU ' x j

i = xNi

i −UU ' xNi

i

                                  
(11) 

where  xcom
i  is a common vector of the ith class and is 

independent of index j. 
Step 3: From the matrix  where 

Bcom = [bcom
1 ,bcom

2 ,...,bcom
C−1]

bcom
i = xcom

i − xcom
C , i = 1,...,C −1                                         

(12) 

Finally, we apply the GSO to Bcom  and then get the 
projection matrix. 

3. EXPERIMENTS 

The ORL and AR face databases are used to test the 
proposed method. 

3.1 Experiments with the ORL face database 
In this group of experiments, the Olivetti-Oracle Research 

Lab (ORL) face database is adopted and used to test the 
performance of face recognition algorithms under the 
condition of minor variation of scaling and rotation (as 
shown in Fig.1). The ORL face database contains 400 
frontal faces sized 112 x 92: 10 tightly, cropped images of 
40 individuals with variation in pose, illumination, facial 
expression (open/closed eyes, smiling/not smiling) and 
facial details (glasses/no glasses) .  

 
Fig.1 Face images on the ORL database. 

When the difference subspace is a well-conditioned 
matrix, the experimental result of the proposed algorithm is 
the same as that of the DCV. Here, we test algorithms under 
the difference subspace where columns have linear 
correlation. We randomly selected samples 3, 4, 5, 6, 7 from 
each class for the training, and the remaining samples in 
each class for the testing. Then, we randomly selected an 
image with little motion using an affine transform as another 
image in each class. Constructing the difference subspace 
matrix was ill-conditioned by the above procedure because 
of the linear correlation among columns in this subspace.  

The experiments were also repeated 10 times. The 
average recognition rates (arr), standard deviation (std) and 
LOO of the two experiments are listed in Table 2. It can be 
seen that the LOO of the GSR is less than that of the GSO. 
The recognition rate of the proposed method was superior to 
that of the DCV under the columns of the subspace which 
have linear correlation. The experimental results show that 
the projection vector orthogonality can be well preserved by 
the GSR.  

Table 2: Comparison of the two methods on the ORL 
database (under the ill-conditioned matrix) 

Method Training 
sample 

3 4 5 6 7 

0.81 0.85 0.91 0.92 0.94 arr 
std 2.32 2.21 2.54 2.75 1.33 DCV 
LOO 13.8 49.1 29.3 59.0 28.8 

0.84 0.89 0.93 0.94 0.96 arr 
std 2.14 1.55 2.15 2.56 1.25 

The 
proposed 
method LOO 0.18 0.19 0.21 0.21 0.19 

3.2 Experiments with the AR face database 
The AR face database contains over 4,000 color images 
corresponding to 126 people’s faces (70 men and 56 women) 
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[1]. Images feature frontal view faces with different facial 
expressions, illumination conditions, and occlusions (sun 
glasses and scarf). No restrictions on wear (clothes, glasses, 
etc.), make-up, hair style, and so on. We selected 1300 
images of 50 males and 50 females, and each person had 13 
images for testing our method. The original images are 768 
x 576 pixels, and were then normalized to 128 x 128 (as 
shown in Fig.2).  

 
Fig.2 Original and normalized face images on the AR face 
database. 

 
Fig.3: Recognition rate (%) comparison of different 

approaches on the AR database. 
We designed a series of experiments to compare the 

performance of the proposed method, Eigenface, LDA and 
DCV methods under the conditions where the training 
sample size was varied. We randomly selected 3, 4, 5, 6, 7, 
8, 9 samples from each class for the training, and the rest for 
the testing. In all training samples, only one image was 
chosen to transform by a subtle affine matrix to get a similar 
image. Each experiment was repeated 5 times, and the 
results were shown in Fig.3. 

Fig.3 revealed that the proposed method was comparable 
to other methods in terms of recognition rate and the number 
of the training samples. It can be easily ascertained, with 
increased training number, that the proposed method 
obtained better recognition rate compared to other methods. 

The experimental results show that the DCV based on the 
GSR algorithm is better than the DCV when the columns of 
the subspace have linear correlation.  

4. CONCLUSION 
The classical Gram-Schmidt technique may produce a set 

of vectors which is far from orthogonal and sometimes the 
orthogonality can be lost completely. If the projective 
vectors obtained by the GSO are not optimal, the 
effectiveness of the DCV will also decrease. In this paper, 
we proposed an improved DCV method based on the GSR 
for face recognition. For obtaining an accurate projection 
onto the corresponding space, the orthogonal basis problem 
is solved usually by the Gram-Schmidt process with 
reorthogonalization. Our experiments showed that the 
performance of the proposed algorithm is the same as that of 
the DCV when the columns of the subspace have linear 
independency, while the performance of the proposed 
algorithm is better than that of the DCV when the columns 
of the subspace have linear correlation. 
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