978-1-4673-0046-9/12/$26.00 ©2012 IEEE

EDCIRCLES: REAL-TIME CIRCLE DETECTION BY EDGE DRAWING (ED)

Cuneyt Akinlar

Cihan Topal

Computer Engineering Department, Anadolu University, Eskisehir, TURKEY
{cakinlar, cihant}@anadolu.edu.tr

ABSTRACT

We propose a real-time, parameter-free circle detection
algorithm that produces accurate results with very few false
positives. The algorithm makes use of the contiguous
(connected) set of edge segments produced by our novel
edge segment detector, the Edge Drawing (ED) algorithm;
hence the name EDCircles. The proposed algorithm first fits
line segments to ED’s edge segments and then processes
these line segments to detect circles in a given image. We
show through experimentation that EDCircles works real-
time, produces good results, and is very suitable for the next
generation real-time automation applications including
automatic inspection of manufactured products, human eye
iris and pupil detection, circular traffic sign detection, etc.

Index Terms— Real-Time Circle Detection, Edge
Drawing Algorithm, EDLines, Eye Pupil Detection, Circular
Traffic Sign Detection

1. INTRODUCTION

Detection of circular objects in digital images is an
important and recurring problem in image processing and
computer vision, and has many applications especially in
such automation problems as automatic inspection of
manufactured products, pupil and iris detection [1], circular
traffic sign detection [2], and many others.

Traditionally, the most popular circle detection techniques
are based on the famous Circle Hough Transform (HT) [4-
6]. These techniques first compute an edge map of the image
using an edge detector, e.g., Canny [3], map the edge pixels
into the three dimensional Hough Circle space and extract
circles that contain a certain number of edge pixels. Not only
HT-based techniques are very slow and space-demanding,
but they also produce many false detection. Additionally,
these methods have many parameters that must be preset by
the user, which limit their use.

To overcome the limitations of the classical HT methods,
many variants have been proposed including probabilistic
HT [7], randomized HT [8], fuzzy HT [9] etc. All these
methods try to correct different shortcomings of HT, but
each have shortcomings of their own, and are still slow to be
of any use in real-time applications.

1309

Recently, some genetic algorithm-based circle detection
methods have been proposed [10, 11]. These techniques
have mixed results and high running times, and therefore,
are not suitable for real-time automation applications.

Frosio et al. [12] propose a real-time circle detection
algorithm based on maximum likelihood. Their method is
fast and can detect partially occluded circular objects, but it
requires that the radius of the circles to be detected be
predefined, which greatly limits its applications. Wu et al.
[13] present a circle detection algorithm that runs 7
frames/sec on 640x480 images. The authors claim to achieve
high success rate, but there is not much experimental
validation to back their claims.

In this paper, we present a real-time, parameter-free circle
detection algorithm that produces accurate results with very
few false positives. Our algorithm makes use of the
contiguous (connected) set of edge segments produced by
our novel edge segment detector, the Edge Drawing (ED)
algorithm [14-16]; hence the name EDCircles. Our
algorithm first fits line segments to ED’s edge segments [17-
19], then processes the line segments to extract circular arcs,
and finally, combines these arcs to detect complete circles.

The rest of the paper is organized as follows: Section 2
gives an overview of ED and line extraction. Section 3
describes the details of the EDCircles algorithm. Section 4
presents experimental results and section 5 concludes the

paper.

2. EDGE DETECTION BY EDGE DRAWING (ED)
AND LINE SEGMENT DETECTION BY EDLINES

Edge Drawing (ED) [14-16] is our recently-proposed, real-
time edge/edge segment detector. Unlike traditional edge
detectors, e.g., Canny [3], which work by identifying a set of
potential edge pixels in an image and eliminating non-edge
pixels through operations such as non-maximal suppression,
hysteresis thresholding, erosion etc., ED follows a proactive
approach and works by first identifying a set of gradient
extrema points in the image, called the anchors, and then
links these anchors using a smart routing procedure; that is,
ED literally draws edges in an image. ED outputs not only a
binary edge map similar to those output by traditional edge
detectors, but it also outputs the result as a set of edge
segments each of which is a contiguous (connected) pixel
chain [23-25].

ICASSP 2012

(a)
Figure 1. (a) An eye image (350x343), (b) Edge segments extracted by ED.
Each color represents a different edge segment. ED outputs 107 edge
segments in 8.22 ms. (c) Line segments extracted from the edge segments.

(b) (©

Fig. 1 shows a 350x343 grayscale eye image and the edge
segments output by ED. Each color in the edge map
represents a different edge segment. For this image, ED
outputs 107 edge segments in 8.22 milliseconds. Notice the
high quality nature of the edge map with all details clearly
visible.

Each edge segment traces the boundary of one or more
objects in the figure. While the boundary of an object may
be traced by a single edge segment, as the pupil and iris
segments are in Fig. 1(b), it is also possible that an object’s
boundary be traced by many different edge segments. The
result totally depends on the structure of the objects, and the
amount of obstruction and noise in the image.

Given the set of edge segments output by ED, it is easy to
fit lines and extract line segments in the image. In [17-19]
we present a real-time, parameter-free line segment detector
called EDLines, which takes ED’s edge segments as input
and extracts line segments by simply fitting a line to a set of
contiguous pixels satisfying a straightness criterion. The line
segments are then validated using the Helmholtz principle
[20], which guarantees that only a few false detections are
made. Fig. 1(c) shows the line segments extracted from ED’s
edge segments by EDLines. Notice that all circular
boundaries, e.g., pupil and iris, are approximated by a
contiguous set of line segments. In the next section we show
how circle detection can be made by a post-processing of the
extracted line segments.

3. EDCIRCLES: A REAL-TIME CIRCLE DETECTOR

To detect the circles in a given image, our idea is to process
the line segments detected by EDLines. Since the boundary
of a circular object is approximated by a chain of short line
segments (refer to Fig. 1), our idea is to look at consecutive
line segments over the same edge segment, and see if they
form a circular arc or a complete circle.

()
Figure 2. (a) A sample circle obstructed by a vertical rectangle, (b) Two
edge segments extracted by ED, (c) Line segments extracted from the edge
segments.

(b) (©

1310

Fig. 2 shows an example circular object obstructed by a
vertical rectangle, where the circle boundary is traced by two
edge segments: One edge segment (green) starts from the top
left corner and moves all the way down, and the other edge
segment (blue) starts from the top right corner and moves all
the way down. Fig. 2(c) shows the line segments
approximating the edge segments.

To detect a circular arc formed by a consecutive set of line
segments on the same edge segment, we simply walk over
the edge segments and compute the angle between each
consecutive line segment. If the angle is between certain
thresholds, then the two line segments may be part of a
circular arc. If not, we skip the first line segment, and
continue with the next pair.

(b) (©)

Figure 3. (a) An illustration of the right vertical segment in Fig. 2 being
approximated by 6 consecutive lines v1 through v6, and the angle between
consecutive lines, (b) Two circular arcs detected from the two edge
segments in Fig. 2, (c) One circle detected by combining the two arcs
shown in (b).

Fig. 3 shows an illustration of the right vertical segment in
Fig. 2 being approximated by 6 consecutive lines, vl
through v6, and the angle between consecutive lines.
Although the real segment is approximated by 10 lines as
detailed in Table 1, we assume 6 lines for the purposes of
illustration. To process these line segments, we take
consecutive line segments and compute the angle between
two lines depicted as ©; through ©s in the figure. This can
easily be done by considering each line to be a vector and
taking the dot product of the two vectors: v1.v2
[vl|[v2|.cose. We also compute the direction of the turn
going from the first line to the next, which is computed by
taking the cross product of the two vectors.

Tablel: Lines making up the right vertical segment in Fig. 2

Line | Length | Angle | Turn Dir.
1 29 67 -
2 25 17 +
3 14 17 +
4 20 18 +
5 19 18 +
6 22 22 +
7 24 23 +
8 21 21 +
9 22 68 +
10 24 - -

Table 1 shows the 10 lines making up the right vertical
segment in Fig. 2, their lengths, the angle between the two

consecutive line segments and the direction of the turn going
from one line to the next. After computing this table, we
simply go over the line segments, and try to find a set of
consecutive line segments which may form an arc.
Obviously, the line segments making up an arc must have
the same turn direction (all — or all +) and the angle between
consecutive lines must be in-between certain thresholds. If
the angle is too small, we assume that the line segments are
collinear, so they cannot be part of an arc; if the angle is too
big, we assume that the line segments are part of a strictly
turning object such as a square, a rectangle, etc. For the
purposes of our current implementation, we fix the low angle
threshold to 6 degrees, and the high angle threshold to 60
degrees. These values have Dbeen obtained by
experimentation on a variety of images containing various
circular objects.

Processing the line segments in Table 1, our arc detection
algorithm finds the line segments 2-9 to be a potential arc.
We then fit a circle to these line segment pixels using the
least square circle fit algorithm [21]. If the mean square
error is less than a certain threshold (2 pixels), then we take
these pixels to be an arc. Using this algorithm, we detect the
two arcs shown in Fig. 3(b), one for each segment.

The final step of the algorithm is to go over the detected
arcs and try to extract circles by combining the arcs. To do
this, we collect arcs having similar radius and center, and
combine them by fitting a new circle. If the final mean
square error is less than the error threshold (2 pixels), and
the arc pixels make up at least half, i.e., 50%, of the circle’s
circumference, then the arcs are combined into a circle.
Using this algorithm, we combine the two arcs in Fig. 3(b)
and obtain the circle in Fig. 3(c).

4. EXPERIMENTAL RESULTS

To measure the performance of EDCircles [22], we take
both synthetic and natural images containing circular objects
and feed them into our algorithm. We then show the
detected circles and the running time. To compare the
performance of EDCircles to a fast circle detection
algorithm from the literature, we choose OpenCV’s circle
detection function, cvHoughCircles. The reason for
choosing OpenCV is due to its comparable speed to
EDCircles and because it is open source so that anyone can
repeat the same results. We note that cvHoughCircles
has many parameters (similar to many other circle detection
algorithms in the literature) that must be pre-supplied by the
user. To obtain the results by cvHoughCircles, we tried
many different parameters and present the best results. With
a single set of default parameters cvHoughCircles either
fails to detect many valid circles or produces many false
positives. Note, however, that EDCircles is parameter-free in
the sense that it has one set of internal parameters used for
all images presented in this paper and on the EDCircles
demo Web site [22].

1311

10 circles, 11.04 ms 9 circles, 25 ms

7

S

\) ,)/
\\ \«:\\(’ / \\\//,,w

400x390 9 circles, 8.20 ms

8 circles, 32 ms

600x450 5 circles, 12.92 ms 1 circle, 22 ms
Figure 4: Cirle detection results by EDCircles (middle), OpenCV
cvHoughCircles (right).

Fig. 4 shows the performance of EDCircles and

cvHoughCircles on three synthetic and natural images.
The running times were measured in a PC with a 2.2 GHz
E4500 CPU and 2GB RAM. It is clear from the figure that
EDCircles detects all valid circles (except very small ones)
in real-time, whereas cvHoughCircles fails in detecting
many valid circles.

i

2 circles, 3.84 ms

g (AR 7

'26x192 1 circle, 4.50 ms

1 circle, 12.20 ms

(O ©

348x341
Figure 5: Eye pupil or iris detection results by EDCircles (middle), OpenCV
cvHoughCircles (right)

2 circles, 10.04 ms 1 circle, 10.90 ms

Fig. 5 shows the performance of EDCircles and
cvHoughCircles on three eye images. Detection of the
eye pupil and iris is a very important problem for eye
tracking automation applications and must be performed in

real-time [1]. The results in Fig. 5 show that EDCircles is
able to detect the pupil or the iris successfully in all images.
cvHoughCircles also detects the pupil in all images,
but the parameters must be chosen carefully as we did here,
for otherwise it produces many false detections.

3 circles, 16.83 ms

@ ©

‘ 6 circles, 13,07 ms

e

392x251 9 circles, 7.29 ms 5 circles, 21.75 ms

Figure 6: Circular traffic sign detection results by EDCircles
(middle), OpenCV cvHoughCircles (right)

Fig. 6 shows the performance of EDCircles and OpenCV
cvHoughCircles on circular traffic sign detection
problem, which is another important automation problem
requiring real-time performance [2]. It is clear from the
results that EDCircles is able to detect almost all circular
traffic signs except very small ones (having radius less than
10 pixels) or those which appear as an ellipse rather than a
circle in the image. Clearly, depending on the camera
position, a circle appears as an ellipse on the image plane,
which the current version of EDCircles cannot handle. Our
goal is to extend EDCircles to detect such elliptic objects in
the next version of the code.

As for the running time performance of EDCircles, it is
clear from the results presented in Figs. 4, 5 and 6 that
EDCircles runs in blazing real-time speed and is up to 4
times faster than OpenCV’s cvHoughCircles.

5. CONCLUSIONS

EDCircles is real-time, parameter-free circle detection
algorithm that works by analyzing the line segments
extracted by our real-time line segment detector EDLines.
Experiments shown in this paper (and others that the reader
may wish to perform online at
http://ceng.anadolu.edu.tr/CV/EDCircles/Demo.aspx [22])
show that EDClircles produces good results with very few
false positives, and it achieves this in blazing speed. The
problem with the current version of EDCircles is that it fails
in detection of small-sized circles (having radius less than 10
pixels) and those which look elliptical rather than circular.

1312

As future work, our goal is to extend EDCircles to handle
these more difficult cases.

6. ACKNOWLEDGEMENTS

This work is partially supported by The Scientific and
Technological Research Council of Turkey (TUBITAK)
grant 111E053.

7. REFERENCES

[11 Y. Ebisawa, "Robust pupil detection by image difference with
positional compensation", In Proc. of IEEE VECIMS, pp.143-148,
2009.

[2] A. Arlicot, B. Soheilian, and N. Paparoditis, “Circular Road Sign
Extraction from Street Level Images Using Color, Shape and Texture
Database Maps,” Proc. IAPRS, vol. XXXVIII, pp. 205-210, 2009.

[3] J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no.
6, pp. 679-698, 1986.

[4] P.V.C. Hough, “Methods and means for recognizing complex
patterns,” US Patent, 3069654, 1962.

[51 J. Hlingsworth, and J. Kittler, “A survey of the Hough transform,”
Computational Vision, Graphics, and Image Processing, vol. 44, pp.
87-116, 1988.

[6] E.R. Davies, “A Modified Hough Scheme for General Circle
Location,” Pattern Recognition Letters, vol. 7, pp. 37-43, 1988.

[7] D. Shaked, O. Yaron, and N. Kiryati, “Deriving stopping rules for the
probabilistic Hough Transform by sequential analysis,” Computer
Vision and Image Understanding, vol. 63, pp. 512-526, 1996.

[8] K. Chung, and Y. Huang, “Speed up the computation of randomized
algorithms for detecting lines, circles, and ellipses using novel tuning
and LUT-based voting platform,” Applied Mathematics and
Computation, vol. 190, no. 1, pp. 132-149, 2007.

[91 J.H. Han, L.T. Koczy, and T. Poston, “Fuzzy Hough Transform,”
Proc. Int. Conf. on Fuzzy Systems, vol.2,pp. 803-808, 1993.

[10] J. Yao, “Fast Robust Genetic-algorithm based Ellipse Detection,”
Proc. ICPR, pp. 859-862, 2004.

[11] V. Ayala-Ramirez, C.H. Garcia-Capulin, A. Peres-Garcia, and R.E.
Sanchez-Yanez, “Circle detection on images using genetic
algorithms,” Pattern Recognition, vol. 27, no. 6, pp. 652-657, 2005.

[12] I Frosio, N.A. Borghese, “Real Time Accurate Circle Fitting,” Pattern
Recognition, vol. 14, no. 3, pp. 1041-1055, 2008.

[13] J. Wu, J. Li, C. Xiao, F. Tan, and C. Gu, “Real-time Robust Algorithm
for Circle Object Detection,” Proc. IEEE Conf. for Young Computer
Scientists, pp. 1722-1727, 2008.

[14] C. Topal, C. Akinlar, and Y. Genc, “Edge Drawing: A Heuristic
Approach to Robust Real-Time Edge Detection,” The twentieth Int’l
Conf. on Pattern Recognition (ICPR), Istanbul, Turkey, August 23-26
2010.

[15] C. Topal, O. Ozsen, and C. Akinlar, “Real-time Edge Segment
Detection with Edge Drawing Algorithm,” Proc. ISPA, Crotia, 2011.

[16] Edge Drawing Web Site. http://ceng.anadolu.edu.tr/CV/EdgeDrawing

[17] C. Akinlar, and C. Topal, “EDLines: Realtime Line Segment
Detection by Edge Drawing (ED),” IEEE Int’l Conf. on Image
Processing (ICIP), Brussels, Belgium, Sep. 2011.

[18] C. Akinlar, and C. Topal, “EDLines: A Real-time Line Segment
Detector with a False Detection Control,” Pattern Recognition Letters,
vol. 32, no. 13, pp. 1633-1642, Oct. 2011.

[19] EDLines Web Site. http://ceng.anadolu.edu.tr/CV/EDLines

[20] A. Desolneux, L. Moisan, and J.M. Morel, From Gestalt Theory to
Image Analysis: A Prob. Approach, Springer, 2008.

[21] R. Bullock, “Least Squares Circle Fit,”
www.dtcenter.org/met/users/docs/write_ups/circle fit.pdf, 2006.

[22] EDCircles Web Site. http:/ceng.anadolu.edu.tr/CV/EDClircles

