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ABSTRACT

Bottom-up visual saliency can be computed through infor-

mation theoretic models but existing methods face signifi-

cant computational challenges. Whilst nonparametric meth-

ods suffer from the curse of dimensionality problem and are

computationally expensive, parametric approaches have the

difficulty of determining the shape parameters of the distri-

bution models. This paper makes two contributions to infor-

mation theoretic based visual saliency models. First, we for-

mulate visual saliency as center surround conditional entropy

which gives a direct and intuitive interpretation of the center

surround mechanism under the information theoretic frame-

work. Second, and more importantly, we introduce a fast

nonparametric multidimensional entropy estimation solution

to make information theoretic-based saliency models compu-

tationally tractable and practicable in realtime applications.

We present experimental results on publicly available eye-

tracking image databases to demonstrate that the proposed

method is competitive to state of the art.

Index Terms— visual saliency, conditional entropy, k-

d tree, information theory, multidimensional entropy estima-

tion.

1. INTRODUCTION

In recent years, there has been increasing interest in the ap-

plication of the visual saliency mechanism to visual signal

processing problems. A predominant theory of computa-

tional visual saliency is the center-surround mechanism that

is ubiquitously found in the early stages of biological vision

[1]. Center-surround saliency models in the time domain [2],

frequency domain[3, 4], and information domain [5, 6, 7]

have been proposed. Radically, Judd et al.[8] proposed that

saliency maps can be learned directly from training samples

by machine learning methods instead of the center-surround

mechanism.

Center-surround methods in the information domain are

computationally most challenging because of the curse of di-

mensionality problem. For instance, both the self-information

[6] and the mutual information [7] approaches involve esti-

mating probability density functions in very high dimensional

spaces with limited samples. A few work-around solutions

have been proposed, by projecting the data onto lower di-

mensional spaces through independent component analysis

(ICA) [6], discrete cosine transform (DCT) [9], and Walsh-

Hadamard Transform (WHT) [10] or by modeling informa-

tion quantity as a parametric Generalized Gaussian Distribu-

tion (GGD) [7]. However, projection methods are compu-

tationally intensive and estimating the shape parameters of

GGD is hard as the authors of [7] have already pointed out.

In this paper, the center surround principle of visual

saliency is directly formulated as the conditional entropy of

the center given its surrounds. A major contribution of this

paper is a fast nonparametric multidimensional entropy esti-

mation solution that overcomes the curse of dimensionality

problem and computational complexity issue of information

domain visual saliency models thus making information-

based saliency models computationally tractable and prac-

ticable in real-time applications. We present experimental

results on two publicly available eye-tracking still image

databases [6, 8] to demonstrate the effectiveness of the pro-

posed method and compare it with existing techniques.

2. SALIENCY BASED ON CENTER SURROUND
CONDITIONAL ENTROPY

Let Ic(x, y) be an image patch at location (x, y) and Isr(x, y)
its surrounding regions. The conditional entropy of the center

given its surround can be defined as H(Ic(x, y)|Isr(x, y)) =
H(Ic(x, y), Isr(x, y)) − H(Isr(x, y)) or in terms of joint and

marginal probabilities

H =
∑

Ic(x,y)∈I
Isr(x,y)∈I

p(Ic(x, y), Isr(x, y))log
p(Isr(x, y))

p(Ic(x, y), Isr(x, y))

(1)
where H is short for H(Ic(x, y)|Isr(x, y)). The conditional

entropy H(Ic(x, y)|Isr(x, y)) can be understood in a number

of ways. From a coding or information theory’s perspective,

it will take H(Ic(x, y), Isr(x, y)) bits to code the center and

its surrounds together, but if we knew the surround Isr(x, y)
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already, we will have gained H(Isr(x, y)) bits of information,

and the conditional entropy measures the remaining bits nec-

essary for coding the center. From an uncertainty or infor-

mativeness point of view, the conditional entropy measures

the remaining uncertainty of the center once its surrounds are

known, or the amount of information of the center given the

knowledge of its surrounds. We can use the conditional en-

tropy as a measure of saliency, i.e.

S(x, y) = H(Ic(x, y)|Isr(x, y)) (2)

The definition of saliency in equation (2) and (1) is consis-

tent with a number of definitions in the literature including

self-information [6], surprise [11] and decision theoretic

saliency [7]. The self-information saliency of [6] measures

the self-information of Ic(x, y) in the context of its surrounds,

−log{p(Ic(x, y))}. If Ic(x, y) is a common patch within the

image, then p(Ic(x, y)) is large, −log{p(Ic(x, y))} will be

small, hence the saliency will be small. S(x, y) in (2) has

the same property, that is, if the center and its surrounds are

very similar, then S(x, y) will be small and vice versa. The

surprise measure of [11] can be re-written as ( S is short for

S(Ic(x, y), Isr(x, y))

S =
∑

Ic(x,y)∈I
Isr(x,y)∈I

p(Isr(x, y))log
p(Isr(x, y))

p(Isr(x, y)|Ic(x, y))
(3)

Here, the surrounds Isr(x, y)) can be interpreted as the model

or background information and the center Ic(x, y) as the new

observation data. Again, the surprise measure will be small

when the center and surround are similar and large when they

are different. The decision theoretic discriminant saliency of

[7] boils down to the computation of mutual information be-

tween the center and its surround, while mutual information

and conditional entropy are related as follows.

MI(Ic(x, y), Isr(x, y)) = H(Ic(x, y))− H(Ic(x, y)|Isr(x, y))
(4)

MI(Ic(x, y), Isr(x, y)) is deduced amount of uncertainty for

the center Ic(x, y) if its surrounds Isr(x, y) are known. MI

can be interpreted as how much similarity surround and center

data has, therefore it is consistent with conditional entropy. A

large mutual information means significant overlap between

center and surround information hence the saliency is small,

so is the conditional entropy. All these information measure-

ments involve the estimation of probability density functions

in very high dimensional spaces with limited data samples,

a very challenging problem. In practice, various simplifica-

tion processes have to be used, e.g., [6] employed indepen-

dent component analysis (ICA) and [7] assumed a parametric

Generalized Gaussian Distribution (GGD) model. In the next

section, we introduce a fast non-parametric method.

3. FAST NONPARAMETRIC ESTIMATION OF
CENTER SURROUND CONDITIONAL ENTROPY

Visual data have excessive amount of information, but only

some attracts attention at early stage. Itti et al.[2] used low-

Fig. 1. Medium Band Filter Flow Chart

level features of intensity, colour and orientation at multi-

resolution to build several conspicuity maps and combine

them linearly to form a saliency map. In the discriminant

saliency map approach, Gao et al.[7] extracted and mod-

eled band-pass features by Wavelet/Gabor Filters and used

parametric GGD to estimate the mutual information between

the center and surround. In this paper, we use mid-band

frequency features which have been shown to allow the

best prediction of attention globally [12]. Figure 1 shows

a step-by-step illustration of mid-band filtering. Firstly, a

9/7 Cohen-Daubechies-Feauveau (CDF) wavelet[13] decom-

poses an image by three levels. Then, all level 1 components

and level 3 low-low frequency component are removed. Fi-

nally, the remaining components are converted back to time-

domain by the inverse of the 9/7 CDF wavelet to form the

mid-band image. The mid-band image is divided into NxN

patches (8x8 patches are utilized in this paper). The saliency

of each center patch C, is computed as the conditional en-

tropy of C given four of its surrounding patches (N, S, W,

and E) as

S(C) = H(C|(N, S,W,E))
= H(C,N, S,W,E)−H(N, S,W,E) (5)

Estimating the two joint entropies on the right-hand side of

(5) is challenging because of the high dimensionality of the

data. To get round the problem, we take a similar approach as

[14] and treat the coordinate locations of the pixels as random

variables and approximate (5) as

S(C) = H(c(x, y), n(x, y), s(x, y), w(x, y), e(x, y))

− H(n(x, y), s(x, y), w(x, y), e(x, y)) (6)

where c(x, y), n(x, y), s(x, y), w(x, y), e(x, y) are respectively

pixels from the C,N, S,W,E patches at the same reference

location (x,y). We treat the problem as drawing samples from

(x,y) in order to approximate the conditional entropy. With

the formulation of (6), we can now simplify the problem as

estimating the entropies in the 4-D and 5-D spaces with a total

of 8x8 = 64 samples. We use a technique similar to [15] to

achieve fast implementation of (6). The technique is based on

a k-d tree style approach to partitioning the input data space

Ω ∈ �D into A = {Aj |j = 1, 2, . . . ,m} with Ai

⋂
Aj = ∅

if i �= j and
⋃

j Aj = Ω. Let nj be the number of samples

in the cell Aj , V(Aj) the volume of cell Aj , the total number

of samples N, then the multidimensional joint entropy can be

estimated as

Ĥ =

m∑
j=1

nj

N
log

(
N

nj
V (Aj)

)
(7)
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Fig. 2. From left to right: Image Sample, ITT, AIM, ENT and

MIT saliency maps

The computational complexity of the algorithm is Θ(DNlogN)
and the space complexity is Θ(DN). For the algorithm to

work, the sample size has to satisfy N ≥ 2D. Our setting,

N = 64 and D = 5 or D = 4, 25 = 32 and 24 = 16, therefore

meets the samples size requirement of the algorithm.

4. EXPERIMENTAL RESULTS

We evaluate the new conditional entropy based saliency

method (from now on referred to as ENT) on publicly avail-

able eye tracking databases of Bruce and Tsotos [6] and Judd

et al.[8], and compare it with a number of saliency estima-

tion methods in the literature including, Itti and Koch (ITT)

[2], spectral residual saliency (SRS) [3], Information Maxi-

mization (AIM)[6], and discriminant saliency (DIS) [7]. Fig.

2 shows the saliency maps generated by different methods

of a sample image. It is seen that the visual appearance of

these saliency maps are quite similar. To compare the perfor-

mances of different methods quantitatively, we use Tatler’s

numeric measurement [16]. Saliency maps are treated as

binary classifiers to discriminate fixation points versus non-

fixation points. Threshold for classifying fixation points are

not fixed but systematically changed from minimum to maxi-

mum of saliency values to generate ROC curves. ROC curves

of various methods on Bruce’s database [17] are shown in

Fig. 3. Area under the ROC curves (AUC) have been used

by a number of authors to give quantitative comparison of

saliency computation methods and table 1 shows the AUC

values of five different methods.

Table 1. Area Under Curve (AUC) for different methods.
Methods ITT [2] AIM [6] New ENT DIS[7] SRS[3]

AUC 0.70947 0.73873 0.78167 0.76940 0.75434

The ROC curves show that the new ENT method gener-

ally performs better than AIM and ITT methods, and the per-

formances are reconfirmed by the area under curve (AUC)

results in table 1. In the table, the AUC result of DIS saliency

method was performed on the same database by the original

authors and taken directly from [7]. These AUC results show

that ENT methods also performs better or at least as well as

the DIS method.

Fig. 3. ROC of ITT, AIM, ENT and SRS methods

Fig. 4. Inter-subject ROC of ITT, AIM, ENT, and SRS

ROC curves and AUC values are useful for comparing

different computational saliency approaches, but they do not

show relationships between these methods and eye tracking

data. Inter-subject ROC curves proposed by Harel et al.[18]

help to show performances of human visual system versus

that of computational saliency methods. Fig. 4 shows the

Inter-subject ROC curves of ENT against a few other meth-

ods for the database of [6]. This plot clearly demonstrates that

our new ENT technique has outperformed current state-of-

art saliency methods and displayed good matching with eye-

tracking data.

Table 2. Time Consumption of Saliency Methods

Methods ITT AIM ENT SRS

Time (s) 1.2488 66.2673 0.93094 0.33654

Information-theoretic saliency methods such as AIM has

drawbacks due to their intensive computational requirements

and are unsuitable for real-time applications. The proposed

method can overcome this issue. Table 2 shows the compu-

tational speeds of several techniques. It is seen that ENT is
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over 70 times faster than AIM and 1.3 times faster than ITT.

Though it is slower than SRS, ENT can better match eye-

fixation data than SRS. All experiments are done in MATLAB

on a 2.33 GHz Intel Core 2 Duo computer running Linux.

The ENT method was further tested on the database cre-

ated by Judd et al.[8]. Quantitative results in table 3 once

again show that our method compares very well against other

state of the art methods.

Table 3. Area Under Curve (AUC)
Methods ITT AIM ENT MIT[8]

AUC 0.74940 0.71165 0.78157 0.68845

5. CONCLUDING REMARKS

In this paper, we have formulated center-surround bottom-

up visual saliency as conditional entropy and presented a fast

nonparametric multidimensional entropy estimation solution

to overcome the inherent curse of dimensionality in conven-

tional nonparametric approaches and difficulty of determin-

ing shapes of distribution in parametric approaches of infor-

mation domain visual saliency models. We have shown that

the new method is not only computationally efficient but also

achieves state of the art performances on publicly available

eye tracking databases.

6. REFERENCES

[1] D.H. Hubel and T.N. Wiesel, “Receptive fields and func-

tional architecture into nonstriate visual areas (18 and

19) of the cat.,” Journal of neurophysiology, vol. 28, pp.

229–89, Mar. 1965.

[2] L. Itti, C. Koch, and E. Niebur, “A model of saliency-

based visual attention for rapid scene analysis,” IEEE
Transactions on pattern analysis and machine intelli-
gence, vol. 20, no. 11, pp. 1254–1259, 1998.

[3] X. Hou and L. Zhang, “Saliency detection: A spectral

residual approach,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR07). IEEE Com-
puter Society. 2007, number 800, pp. 1–8, Citeseer.

[4] C.L. Guo, Q. Ma, and L.M. Zhang, “Spatio-temporal

Saliency detection using phase spectrum of quaternion

fourier transform,” 2008 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1–8, 2008.

[5] T. Kadir and M. Brady, “Saliency, scale and image de-

scription,” International Journal of Computer Vision,

vol. 45, no. 2, pp. 83–105, 2001.

[6] N. Bruce and J. Tsotsos, “Saliency based on informa-

tion maximization,” Advances in neural information
processing systems, vol. 18, pp. 155, 2006.

[7] D. Gao, V. Mahadevan, and N. Vasconcelos, “The

discriminant center-surround hypothesis for bottom-up

saliency,” Advances in Neural Information Processing
Systems, vol. 20, pp. 1–8, 2007.

[8] T. Judd, K. Ehinger, F. Durand, and A. Torralba, “Learn-

ing to predict where humans look,” 2009 IEEE 12th In-
ternational Conference on Computer Vision, pp. 2106–

2113, Sept. 2009.

[9] G. Qiu, X. Gu, Z. Chen, Q. Chen, and C. Wang, “An

information theoretic model of spatiotemporal visual

saliency.,” in Proc. of ICME2007, 2007, pp. 1806–1809.

[10] L. Zheng, G. Qiu, J. Huang, and H. Fu, “Salient covari-

ance for near-duplicate image and video detection,” in

Proc. of ICIP2011, 2011, pp. 2585–2588.

[11] L. Itti and P. Baldi, “Bayesian surprise attracts human

attention,” Advances in neural information processing
systems, vol. 18, pp. 547, 2006.

[12] F. Urban, B. Follet, C. Chamaret, O. Meur, and T. Bac-

cino, “Medium Spatial Frequencies, a Strong Predictor

of Salience,” Cognitive Computation, Nov. 2010.

[13] A. Cohen, I. Daubechies, and J.C. Feauveau, “Biorthog-

onal bases of compactly supported wavelets,” Commu-
nications on Pure and Applied Mathematics, vol. 45, no.

5, pp. 485–560, June 1992.

[14] P. Viola and W.M. Wells III, “Alignment by maximiza-

tion of mutual information,” in ICCV. 1995, vol. 24,

p. 16, Published by the IEEE Computer Society.

[15] D. Stowell and M.D. Plumbley, “Fast Multidimensional

Entropy Estimation by k-d Partitioning,” Signal Pro-
cessing Letters, IEEE, vol. 16, no. 6, pp. 537–540, 2009.

[16] B.W. Tatler, R.J. Baddeley, and I.D. Gilchrist, “Vi-

sual correlates of fixation selection: effects of scale and

time.,” Vision research, vol. 45, no. 5, pp. 643–59, Mar.

2005.

[17] N. Bruce and J.K. Tsotsos, “Saliency , attention , and vi-

sual search : An information theoretic approach,” Jour-
nal of Vision, vol. 9, pp. 1–24, 2009.

[18] J. Harel, C. Koch, and P. Perona, “Graph-based visual

saliency,” Advances in neural information processing
systems, vol. 19, pp. 545, 2007.

1308


