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ABSTRACT

This paper describes a novel method for single-image super-

resolution (SR) based on a neighbor embedding technique

which uses Semi-Nonnegative Matrix Factorization (SNMF).

Each low-resolution (LR) input patch is approximated by a

linear combination of nearest neighbors taken from a dictio-

nary. This dictionary stores low-resolution and corresponding

high-resolution (HR) patches taken from natural images and

is thus used to infer the HR details of the super-resolved im-

age. The entire neighbor embedding procedure is carried out

in a feature space. Features which are either the gradient val-

ues of the pixels or the mean-subtracted luminance values are

extracted from the LR input patches, and from the LR and HR

patches stored in the dictionary. The algorithm thus searches

for the K nearest neighbors of the feature vector of the LR

input patch and then computes the weights for approximating

the input feature vector. The use of SNMF for computing the

weights of the linear approximation is shown to have a more

stable behavior than the use of LLE and lead to significantly

higher PSNR values for the super-resolved images.

Index Terms— Super-resolution, neighbor embedding,

Semi-nonnegative Matrix Factorization

1. INTRODUCTION

Super-resolution (SR) refers to the task of producing a high-

resolution (HR) image from one or more low-resolution (LR)

images. In this work we focus on the single-image problem,

whose aim is to synthesize an “enhanced” enlargement of a

target image with possibly better results than traditional inter-

polation techniques.

Single-image Super-Resolution is often referred to as

Example-based Super-Resolution [1, 2], as the prior informa-

tion required in order to estimate the missing HR details is

given in the form of examples, i.e. learned pairs of LR and HR

patches (sub-windows of image) that compose a dictionary.

The learned pairs of patches are usually taken from external

HR images and degraded (blurred and conveniently down-

sized) versions of them. As a first step of any example-based

SR algorithm, the target image is divided into patches of the

same size of the LR patches in the dictionary; then, each LR

input patch is compared to the stored LR patches and, once

the nearest patch among these is found, the corresponding

HR patch is finally taken as the output. A variation to this

procedure is presented in [3] and in some other SR methods

based on sparse representations (e.g. [4, 5]): instead of se-

lecting from the dictionary only one patch, several patches

are taken into account and contribute simultaneously to the

generation of a single HR output patch. In particular, in [3]

the authors propose a single-image SR algorithm, based on

the concept of neighbor embedding and originally inspired

by a method for data dimensionality reduction called Locally
Linear Embedding (LLE) [6]. The basic assumption is that

a patch in the LR target image and the corresponding HR

unknown patch share similar neighborhood structures: as a

consequence of that, once the LR patch is expressed as the

linear combination of a certain number of its neighbors taken

from the dictionary, the output patch can be reconstructed

by using the HR patches in the dictionary corresponding to

the neighbors selected, and combining them in the same way.

This algorithm is shown to be suitable for the SR problem,

but its performance is sensitive to the number of neighbors

chosen, that appears as a parameter difficult to properly set.

We propose a new neighbor embedding method based on

Semi-nonnegative Matrix Factorization (SNMF) [7]. In LLE

the weights are constrained to sum up to one, but no constraint

is specified for their sign. This might explain the unstable

results observed in [3], since possible negative weights can

lead to having subtractive combinations of patches, which is

counterintuitive. Instead, we suggest to compute the weights

with a non-negative constraint, to be compatible with the intu-

itive notion of “combining parts to form a whole” (from [8]).

In neighbor embedding based SR, both the LR and the HR

patches are represented by feature vectors, given by the con-

catenation of some, possibly different, features of their pix-

els, and all the SR steps are performed by using these vectors.

We thus discuss the issue of the choice of the features, and

propose to use the centered luminance values of the pixels to

represent the LR patches, instead of the gradient as in [3].

The paper is organized as follows. Section 2 presents

neighbor embedding as a possible approach for super-resolution.

Then, Section 3 describes our algorithm, particularly the new

method for computing the neighbor combination and the
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choice of the features. In sections 4 and 5, experimental

results are finally reported and commented.

2. SUPER-RESOLUTION VIA NEIGHBOR
EMBEDDING

The Neighbor Embedding (NE) algorithm of Chang et al. [3]

is the starting point for this work. As said, its peculiarity is

that several patches are taken from the dictionary to represent

a single input patch; it follows that multiple patches, i.e. their

HR counterparts in the dictionary, are combined together to

generate an output HR patch. In the algorithm, each patch is

represented by a feature vector: we extract from any single

pixel of the patch one or more features; the patch vector is

then obtained by the simple concatenation of the features of

its pixels. The neighbor search, the weight computation and

the HR patch reconstruction steps are all performed with re-

spect to the feature spaces chosen: once the HR feature vec-

tors are reconstructed, we finally “reverse” the features, so

obtaining the actual HR output patches. In [3], for instance, a

4-value gradient and the centered luminance pixel values are

used as features, respectively for the LR and HR patches. In

Table 1 the notations used in the paper for the corresponding

feature vectors are reported.

Xd = {xj
d}Nd

j=1 LR patches in the dictionary

Xt = {xi
t}Nt

i=1 patches in the LR target image

Yd = {yj
d}Nd

j=1 HR patches in the dictionary

Yt = {yi
t}Nt

i=1 patches in the HR target image

(Note: all patches are intended as patch feature vectors.)

Table 1: Notation used for different types of patch feature vectors.

The NE-based SR approach proceeds as follows.

1. For each LR patch feature vector xi
t ∈ Xt

(a) Find its K nearest neighbors (NN) in Xd in terms of

Euclidean distance:

Ni = argmin
xj
d∈Xd

K
∥∥∥xi

t − xj
d

∥∥∥
2

.

(b) Compute according to some criteria the weights of

the linear combination that approximates xi
t with the

selected neighbors, i.e. the K weights {wij}Kj=1 such

that:

xi
t ≈

∑

xj
d∈Ni

wijx
j
d .

In [3], for instance, the original Neighbor Embedding

algorithm takes from LLE the method used to “embed”

the neighbors. For each input patch, the weights related

to its neighbors are found by solving the following min-

imization problem:

wi = argmin
w

‖xi
t −Xi

dw‖2 s.t. 1Tw = 1 , (1)

where wi is the K × 1 weight vector related to the

input patch xi
t, and Xi

d is a matrix with all its neigh-

bors disposed as columns. (1) can be seen as a Con-

strained Least Squares (LS) problem, whose solution is

provided in [3, 6]. Therefore, in this paper we refer to

the weights in [3] as the “LS weights”.

(c) Apply the same weights for the reconstruction of the

output HR patch feature vector yi
t with the correspond-

ing neighbors in Yd:

yi
t =

∑

yj
d∈H(Ni)

wijy
j
d .

where H(Ni) indicates the corresponding set of the

neighborhood Ni in the HR dictionary Yd.

2. Once all the HR patch feature vectors are generated, we

reverse the features and combine the obtained pixel-based

patches to form the output image. Since the LR patches

are taken from the input image with some overlap, also the

LR patches will be mutually overlapped: the final image is

then obtained by simply averaging the pixel values in the

common regions.

The key points of the neighbor embedding scheme are

the criterion chosen to compute the weights of each neighbor

combination and the features used to represent the patches.

Results from the original Neighbor Embedding SR algo-

rithm, which is characterized by the so-called LS weights

and gradient-based features, show that the error between the

super-resolved image and the ground-truth reaches a mini-

mum value for a certain number of neighbors K (see Figure

8 in [3]). However, this minimum is not always reached for

the same K but seems to depend on the target image. This

might be due to the constraint used in [3]. In fact, in [3] the

weights are constrained to sum to one in order to make the

reconstruction independent of a frame of reference. This can

lead to have negative weights, i.e. the final output HR patches

are obtained from both additive and subtractive combinations

of patches. We believe that having a non-negativity constraint

on the computed weights can help in having a more regu-

lar behavior of the performance of the neighbor embedding

algorithm, i.e. an error strictly decreasing with K.

In Section 3.1 we derive from SNMF another method to

compute the neighbor embedding, that assures the weights to

be non-negative. In Section 3.2 we discuss the issue of the

features and the other parameters of the algorithm.

3. OUR SNMF-BASED ALGORITHM

3.1. Non-negative weight computation

As we look for non-negative weights, (1) can be changed as

follows:

wi = argmin
w

‖xi
t −Xi

dw‖2 s.t. w ≥ 0 . (2)
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(2) can be efficiently approximated by Semi-nonnegative

Matrix Factorization (SNMF) [7]. In fact, SNMF is a method

to perform a factorization of a matrix, where, differently from

“full” Nonnegative Matrix Factorization (NMF) [8], only one

factor is constrained to have positive values. The aimed fac-

torization is in the form:

X ≈ FGT , (3)

where we restrict G to be nonnegative, while placing no re-

striction on the signs of F . In the neighbor embedding case,

we can reformulate (3) as xi
t ≈ Xi

dw
i, where the matrix to

be approximated is a patch of the LR target image, the uncon-

strained factor is the matrix formed by its neighbors, and the

nonnegative factor is the weight vector we want to compute.

In [7] an iterative solution to (3), that is proved to con-

verge to a local minimum of the Euclidean distance ‖X −
FGT ‖2, is found. The iterative solution consists of two mul-

tiplicative update rules, both for F and G elements. In our

case, however, the matrix F , formed by the actual LR patches

in the dictionary, is fixed and no update rule is needed for it.

We implement then only the rule regarding the weight vector,

which, with our notation, can be rewritten in the following

way:

wij ← wij

√√√√√√√√

(
xj
d

T
Xi

d

)+

j
+

[
wiT

(
Xi

d
T
Xi

d

)−]
j(

xj
d

T
Xi

d

)−
j

+

[
wiT

(
Xi

d
T
Xi

d

)+
]
j

, (4)

where the positive and negative parts of a matrix A are defined

respectively as A+
ik = (|Aik| + Aik)/2 and A−

ik = (|Aik| −
Aik)/2. The convergence of the formula, i.e. the non-increase

of the approximation error ‖xi
t−Xi

dw‖2 while updating only

the weight vector, can be proved in the same way as in [7].

Thus, (4) can be used as an iterative formula to obtain non-

negative weights for each patch combination.

3.2. Features and other parameters

As pointed out in [9], the hypothesis of similarity in the neigh-

borhood structures between LR and HR patches, seen as vec-

tors in two possibly distinct feature spaces, does not gener-

ally stand. In [3] a 4-value gradient representation (we call it

“Feature 1”) is used for the LR patches; for the HR patches,

instead, the mean-subtracted luminance values (we call this

representation “Feature 2”) are used as features: after all HR

patch feature vectors are recovered, the features are reversed

by simply adding the average luminance value of the corre-

sponding LR input patches. We keep the same scheme for the

HR patches and test also Feature 2 as a possible feature repre-

sentation for LR patches. In fact, by using the same features

for LR and HR patches, we think that we can better achieve

the assumption of similarity on the neighborhood structures.

After choosing the method for computing the weights of

the neighbor embedding and the features, we still have an im-

portant parameter to set in the neighbor embedding scheme:

the patch size. We experimentally found that the optimal

patch size for a LR patch is 3 × 3 with a 2-pixel overlap.

The size of the HR patches comes as a consequence of the

magnification factor.

4. EXPERIMENTAL RESULTS

In order to make a comparison between the original LLE-

based SR algorithm in [3] and our SNMF-based algorithm,

we report the results for two images. In both cases, we start

from an original HR image, which plays as the “ground-

truth”, and we get the LR input image, by downsizing it.

The external dictionaries, “relatively small” in size, are built

from the same HR example images. Each example image

is downsized by a factor equal to the magnification factor

we want to achieve, and blurred by using a Gaussian filter,

so obtaining a corresponding LR image. The patch pairs of

the dictionaries are then obtained by cutting the LR and HR

example images according to the patch sizes chosen (3 × 3
patches with a 2-pixel overlap in the LR case). The data on

the dimensions of the two images are reported in Table 2.

The dictionary size for the second test is larger, while using

the same example images, because the LR example images

were obtained by downsizing them by a smaller factor, so

generating more patches.

Image HR size Factor LR size Dict. size
“head” 280× 280 4 70× 70 11844 pairs

“baby” 288× 288 3 96× 96 21168 pairs

Table 2: Dimensions of the two experimental images.

To evaluate the performance of the algorithm we used the

PSNR (Peak Signal-to-Noise Ratio) as the measure of how

close the super-resolved image is from the ground-truth. Fig.

1 and Fig. 2 show the results for the two methods for neigh-

bor embedding, the one used in [3] (LS) and our SNMF-based

method, in terms of PSNR against the number of neighbors

(K), respectively using Feature 1 (gradient representation)

and Feature 2 (luminance values mean-subtracted) to create

the LR patch feature vectors.
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Fig. 1: Comparison between LS and SNMF (PSNR against the num-

ber of neighbor) using Feature 1.
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Fig. 2: Comparison between LS and SNMF (PSNR against the num-

ber of neighbor) using Feature 2.

As we can see from the figures, SNMF behaves much

more regularly than LS, with a sligthly increasing curve in

both cases, and generally outperforms it. On the other hand,

the behavior of LS is diametrically opposite, depending on

which feature we choose. In the case of gradient features

(Feature 1), the PSNR values reach a maximum and then

rapidly decreases; for Feature 2, instead, we have a fall in the

performance for medium-range values of neighbors selected

and then the PSNR starts to rise again. We can also see that

with Feature 2 we have higher PSNR values.

In Fig. 3 some visual results are showed on the compar-

ison between bicubic interpolation, the LLE-based Neighbor

Embedding algorithm and our SNMF-based algorithm.

(a) (b) (c)

(a) (b) (c)

Fig. 3: Visual comparison on the head and bird images between sim-

ple bicubic interpolation (a), the LLE-based Neighbor Embedding

algorithm (b) in a “standard” configuration (Feature 1, K = 5), and

our SNMF-based algorithm (c) with Feature 2 and K = 10.

5. CONCLUSION

In this paper we described a new method for single-image SR,

that uses an external dictionary and is based on the neighbor

embedding approach. With respect to the LLE-based algo-

rithm present in the literature, we proposed a different way to

embed the neighbors of each patch, so that the corresponding

weight coefficients turn out to be non-negative. We derived

it from an algorithm designed to perform semi-nonnegative

matrix factorizations (SNMF), i.e. with only one factor con-

strained to have all positive values. Moreover, we used cen-

tered pixel values as the features to represent each patch (both

LR and HR), differently from the LLE-based algorithm where

a gradient-based representation is used for LR patches. We

showed that our new SNMF-based SR algorithm has more

regular performance as the number of neighbors varies, and

generally higher PSNR values on the output image. In par-

ticular, by using the new features and choosing a number of

neighbors relatively large (e.g. K ≥ 10) we have constantly

good results. Visual results also confirm this evaluation.
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