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ABSTRACT

In this paper, we propose a novel missing region recovery

method by promoting blockwise low-rankness. It is natural

to assume that images often have local repetitive structures.

Hence, any small block extracted from an image is expected

to be a low-rank matrix. Based on this assumption, we formu-

late missing region recovery as a convex optimization prob-

lem via newly introduced block nuclear norm which promotes

blockwise low-rankness of an image with missing regions.

An iterative scheme for approximating a global minimizer of

the problem is also presented. The scheme is based on the

alternating direction method of multipliers (ADMM) and al-

lows us to restore missing regions efficiently. Experimental

results reveal that the proposed method can recover missing

regions with detailed local structures.

Index Terms— Interpolation, Convex optimization, Low-

rankness, Image restoration, Inpainting

1. INTRODUCTION

Recovery of missing regions in images is required for many

applications, e.g., digital effect (object removal), image

restoration (scratch or text removal in photograph), image

coding and transmission (recovery of the missing blocks).

A major approach of missing region recovery is example
based (e.g. [1] [2]). This approach utilizes small blocks, from

known regions, which is intuitively suitable to recover miss-

ing regions. As a result, it needs heuristic and complex proce-

dures such as segmentation, edge detection, and block match-

ing. Therefore, in case of the example based approach, the

optimality of the recovered image is not guaranteed.

On the other hand, many image recovery methods based

on convex optimization techniques have been proposed in the

last decade (e.g. [3] [4] [5]). Because of the convexity, the op-

timality of the recovered image is guaranteed exactly in this

approach. In case of missing region recovery, total variation
(TV) based approach is studied in [6]. The TV based approach

is effective for recovery of nontextured and small missing re-

gions. Moreover, it is fast and free from any heuristic and

complex procedures. However, the TV based approach tends

to produce over-smoothing effects especially in textured/large

missing regions.

In this paper, we propose a novel missing region recovery

method based on convex optimization techniques. The key

observation of our method is that any local region in an image

often have repetitive structures in itself. In other words, if we

see any small block extracted from an image as a matrix, it

can be expected to be low-rank — it contains similar rows and

columns. We call this property as blockwise low-rankness of

an image. Hence, it is very natural to assume that the lost

structures in missing regions can be restored by promoting

blockwise low-rankness. Moreover, even if a missing region

contains texture, our method can recover it efficiently as long

as the missing region originally possesses repetitive structures

same in the surrounding region.

First, we formulate missing region recovery as a convex

optimization problem by employing newly introduced block
nuclear norm which promotes blockwise low-rankness of an

image. Then, we reformulate the problem into a standard

form of an iterative algorithm called alternating direction

method of multipliers (ADMM) [7]. This form allows us to

approximate a global minimizer of the problem by using an

ADMM based algorithm which is free from any heuristic and

complex procedure. It also guarantees the optimality of a

recovered image. The proposed method is tested on a set of

various images with missing regions.

2. PRELIMINARIES

2.1. Proximity Operator

In this paper, we use the proximity operator which was intro-

duced originally by Moreau in 1962 [8] in convex analysis.

Definition 2.1 (Proximity operator) Let Γ0(R
N ) be the

class of proper lower semicontinuous convex function on

R
N . For any h ∈ Γ0(R

N ), γ ∈ (0,∞) and y ∈ R
N , the

minimization problem

min
x∈RN

h(x) +
1

2γ
‖y − x‖22 (1)

admits a unique solution, which is denoted by proxγh(y)
called the proximity operator of index γ of h.

Implementation of the proximity operator depends on the

function h. We introduce two examples of h as follows those

will be utilized in our method.
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Example 2.1 Define h : Rn×n(=N) → [0,∞) by

h : x �→ ‖x‖∗ =
r∑

k=1

σk(x) (2)

where r is the rank of x and σk(x) (k = 1, . . . , r) is the k-

th singular value of x. ‖ · ‖∗ is so called nuclear norm. It

is known that the best low-rank approximation of a matrix is

obtained by suppressing its nuclear norm. The nuclear norm

has been utilized in many applications, for example, in prin-

cipal component analysis [9] [10] and tensor recovery [11].

Let x = UxΣxVx
∗ be singular value decomposition of the

matrix x ∈ R
nv×nh and Σx = diag(σ1(x), . . . , σr(x)) be a

diagonal matrix containing the singular values of x Then, de-

fine Σ̃x as a diagonal matrix containing the γ-shrunk singular

values of x, i.e.,

Σ̃x := diag(max{σ1(x)− γ, 0}, . . . ,max{σr(x)− γ, 0}).
(3)

The proximity operator of (2) is given by

proxγh(x) = UxΣ̃xVx
∗ (4)

Example 2.2 For a given non-empty closed convex set C ⊂
R

N , define the indicator function ιC : RN → [0,∞] by

ιC(x) =

{
0, if x ∈ C,

∞, otherwise.
(5)

The proximity operator of ιC is given by the metric projection

onto C, i.e.,

proxγιC
(x) = PC(x) := argmin

y∈C
‖x− y‖2. (6)

2.2. Alternating Direction Method of Multipliers (ADMM)

Problem 2.1 Suppose G ∈ R
Nz×Ny is full-column rank,

consider the optimization problem for f ∈ Γ0(R
Ny ) and g ∈

Γ0(R
Nz ):

min
(y,z)∈R

Ny×RNz

f(y) + g(z) s.t. z = Gy. (7)

The ADMM algorithm [7] shown in Algorithm 2.1 is an it-

erative algorithm to approximate a solution of problem (7).

Algorithm 2.1 (ADMM)

1: Set k = 0, choose z(0) and b(0).

2: while a stop criterion is not satisfied do
3: y(k+1) = argmin

y∈R
Ny

{
f(y) + 1

2γ
‖(z(k) −Gy − b(k))‖22

}

4: z(k+1) = argmin
z∈RNz

{
g(z) + 1

2γ
‖(z−Gy(k+1) − b(k))‖22

}

5: b(k+1) = b(k) +Gy(k+1) − z(k+1)

6: k ← k + 1
7: end while

3. PROPOSED METHOD

In this section, we newly introduce block nuclear norm which

is a convex function and approximates blockwise rank infor-

mation of an image. Then, we formulate missing region re-

covery as a convex optimization problem via the block nu-

clear norm and an iterative scheme to solve it.

3.1. The block nuclear norm and its proximity operator

Let x ∈ R
n×n(=N) be an image, d

(p,q)
x ∈ R

m×m(=M) be

a block of x whose upper-left pixel coordinate is (p, q). We

propose the block nuclear norm defined as

‖x‖b∗ :=

m
δ −1∑
i=0

m
δ −1∑
j=0

n
m−1∑
k=0

n
m−1∑
l=0

∥∥∥d(mk+1,ml+1)

Sδi,δj(x)

∥∥∥
∗
, (8)

where Si,j(x) denotes the procedure of i horizontal and j ver-

tical periodic shift, δ denotes the shift step number which con-

trols an overlap level. (Note that, for simplicity, (i) we only

treat a square image and block, (ii) n and m are divisible by

m and δ respectively). The block nuclear norm is equal to

the sum of the singular values of all target blocks of an image

(which are allowed to be overlapped).

By simple algebra, we can confirm that the proximity op-

erator of ‖ · ‖b∗ is given by

proxγ‖·‖b∗(x) :=
δ2

M

m
δ −1∑
i=0

m
δ −1∑
j=0

S−δi,−δj(x̃i,j), (9)

where

x̃i,j := BP
(

prox γm
δ ‖·‖∗ , Sδi,δj(x),m

)
, (10)

‘BP(f , x, m)’ denotes the process of applying f to each non-

overlapped m × m size block of x respectively. In other

words, the proximity operator of ‖ · ‖b∗ is equivalent to ap-

ply singular value shrinkage to all target blocks and averaging

pixel values in overlapped areas.

3.2. A convex optimization problem via the block nuclear
norm for missing region recovery

Let v ∈ R
N be an image with K missing regions (all missing

regions are zero padded). The proposed convex optimization

problem for missing region recovery is formulated as follows.

Problem 3.1 (proposed convex optimization problem)

min
x∈RN

‖x‖b∗ + ιC1(x) + ιC2(x) + ιC3(x), (11)

where C1, C2, and C3 are the nonempty closed convex sets

which represent constraints to obtain a desirable recovered

image (detailed explanation is given in Remark 3.1).
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Remark 3.1 (Roles of functions in (11))

‖ · ‖b∗: suppressing this function is expected to recover missing

regions because it is expected that an image often has

local repetitive structures.

ιC1 : a constraint on the average of the pixel values in miss-

ing regions represented by the following non-empty

closed convex set

C1 = {x ∈ R
N | mean(x,M(k)

x ) = mean(x,P(k)
x )

for k = 1, . . . ,K} (12)

where M(k)
x is the index set of k-th missing region pix-

els of x, and P(k)
x is the index set of pixels which sur-

round M(k)
x . ‘mean(x, I)’ denotes the process of cal-

culating an average of the pixel values of x of which

index is in I. This constraint is required for matching

brightness between a missing region and its surround-

ing regions.

ιC2 : a constraint on the numerical range of the pixel values

represented by the following non-empty closed convex

set

C2 = {x ∈ R
N | xi ∈ [0, 255] for i = 1, . . . , N},

(13)

where xi denotes the i-th element of x.

ιC3 : a fidelity constraint with respect to v represented by the

following non-empty closed convex set

C3 = {x ∈ R
N | xi = vi for i /∈ M(k)

v , k = 1, . . . ,K},
(14)

where vi denotes the i-th element of v, and M(k)
v de-

notes the index set of k-th missing region pixels of v.

By this constraint, known pixel values are precisely

maintained.

ιC1 , ιC2 , ιC3 are the indicator function and its composition

ιC1+ιC2+ιC3 takes 0 as long as x ∈ C1∩C2∩C3, otherwise

it takes ∞.

We demonstrate that Problem 3.1 can be translated into

a special example of Problem 2.1, hence the ADMM (Algo-

rithm 2.1) can be applicable to Problem 3.1.

Problem 3.2 (ADMM-applicable form of Problem 3.1)
Let zi = x ∈ R

N (i = 1, . . . , 4), y = x, z = [zT1 · · · zT4 ]T ∈
R

4N , G = [IN · · · IN ]T ∈ R
4N×N (IN is N × N identity

matrix), f : y �→ 0, and g : z �→ ‖z1‖b∗ + ιC1(z2) +
ιC2(z3) + ιC3(z4). Then, Problem 3.1 can be rewritten as

min
y,z

f(y) + g(z) s.t. z = Gy. (15)

Problem 3.2 is the same form of (7) and G is obviously full

column rank, therefore, we can solve Problem 3.1 by applying

the ADMM (Algorithm 2.1) to Problem 3.2.

Let us explain how to calculate each step of the ADMM

(described in Algorithm 2.1) for Problem 3.2. The fact that

f(y) = 0 turns Step 3 of the ADMM for Problem 3.2 into

y(k+1) = argmin
y

{ 1

2γ
||(z(k) −Gy − b(k))||22

}

=
1

4

4∑
i=1

(z
(k)
i − b

(k)
i ) (16)

(Note that b = [bT
1 · · ·bT

4 ]
T ∈ R

4N ). Step 4 of the ADMM

for Problem 3.2 can be separated with respect to z1, . . . , z4,

i.e.,⎡
⎢⎢⎣
z
(k+1)
1

...

z
(k+1)
4

⎤
⎥⎥⎦=argmin

z1,...,z4

{ 4∑
j=1

(
gj(zj) +

1

2γ
‖zj−y(k+1)−b

(k)
i ‖22

)}

= proxγgj (y
(k+1) + b

(k)
i ) for j = 1, . . . , 4 (17)

where g1(z1) = ||z1||b∗, g2(z2) = ιC1(z2), g3(z3) =
ιC2(z3), and g4(z4) = ιC3(z4). The proximity oper-

ator of g1 can be calculated by (9). Similarly by (6),

the proximity operators of g2, g3, and g4 are simply the

metric projection onto each set respectively, i.e., zk+1
2 =

PC1(y
(k+1) + b

(k)
2 ), zk+1

3 = PC2(y
(k+1) + b

(k)
3 ), and

zk+1
4 = PC3(y

(k+1) + b
(k)
4 ), where, for i = 1, . . . , N and

k = 1, . . . ,K,

PC1(x)=

{
xi+mean(P(k)

x )−mean(M(k)
x ), if i ∈ M(k)

x,

xi, otherwise,
(18)

PC2(x)=

⎧⎪⎨
⎪⎩
0, if xi < 0,

xi, if 0 ≤ xi ≤ 255,

255, if xi > 255,

(19)

PC3(x)=

{
vi, if i /∈ M(k)

x ,

xi, otherwise.
(20)

4. NUMERICAL EXPERIMENTS

The eleven standard test image (256 × 256[pixel]) are ran-

domly corrupted with eight 16 × 16 blocks. To verify the

inherent performance of the block nuclear norm itself, we de-

sign the TV based missing recovery method which utilizes the

TV norm instead of the block nuclear norm in (11). Moreover,

to compare substantial recovery performance of the proposed

method, we compare it to Fadili et al.’s method [12] which

is one of the state-of-the-art missing region recovery method.

The proximity operator of the TV norm is approximated by

the fast gradient projection method [4]. We choose m = 32
and s = 4 for the block size and the shift step number of

‖ · ‖b∗, respectively. These parameters produce good perfor-

mance on average. γ is set as 1 and the iteration number is

fixed as 50.
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Table 1. Comparison of PSNR [dB].

��������method

image
Barbara Bridge Building Cameraman Girl Home Lena Lighthouse Mandrill Woman Window

TV based 35.04 31.79 35.92 36.51 38.61 37.54 37.95 34.08 35.29 32.81 36.59

Fadili et al.’s method [12] 35.40 30.80 32.69 34.80 35.54 38.77 36.52 31.83 34.86 34.20 34.97

Proposed 38.66 33.44 38.46 38.01 40.66 43.37 39.04 36.69 38.58 37.00 37.94

Table 1 presents the comparison of PSNR of recovered

images. For all test images, the resulting images of our

method achieved higher PSNR than those of the comparative

methods. For subjective evaluation, the portions of some

resulting images are depicted in Fig. 1. In all TV based re-

covery results, there are many over-smoothing effects. Fadili

et al.’s method generated some artifacts in Fig. 1(b) and

(c). On the other hand, our results of Fig. 1(b) and (c) look

natural and detailed structures are reconstructed efficiently.

Conversely, Fig. 1(e) is the typical failure case of our method,

because this region has random (less repetitive) structure.

(a) ‘Lighthouse’

(b) ‘Barbara’

(c) ‘Window’

(d) ‘Building’

(e) ‘Mandrill’

(f) ‘Cameraman’

Fig. 1. The portions of the resulting images. From left: Origi-

nal; Missing; TV based; Fadili et al.’s method [12]; Proposed.

5. CONCLUSION

We have proposed the missing region recovery method via

the blockwise low-rankness promotion. For recovery of miss-

ing regions, we introduced the block nuclear norm as the cri-

terion of local repetitivity in natural image. We formulated

missing region recovery as the convex optimization problem

via the block nuclear norm. The ADMM based algorithm

which can solve the optimization problem efficiently is also

presented. Numerical experiments showed that the proposed

method works well for missing region recovery.
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