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ABSTRACT

We propose a new technique of non-iterative super-resolution

image reconstruction. A closed form solution to reconstruc-

tion is derived in the discrete cosine transform (DCT) domain

from a MAP-based cost functional. An average image is used

in order to avoid iterative operations. Symmetric convolution

with appropriate types of DCT suppresses boundary distor-

tion. Experimental results demonstrate the effectiveness of

the proposed technique.

Index Terms— Super resolution, MAP estimator, dis-

crete cosine transform, restoration

1. INTRODUCTION

Super-resolution (SR) image reconstruction is to create a

high-resolution (HR) image from multiple low-resolution

(LR) images captured from the same scene. A variety of

approaches to SR image reconstruction exist [1].

Maximum a posteriori (MAP) estimator is one of the ap-

proaches, which provides a flexible and convenient way to

use a priori knowledge. Generally, MAP-based SR requires

high computational load in the spatial domain [2]. One way

to the acceleration is to use an average image, into which the

values of multiple registered LR images are integrated [3][4].

Tanaka and Okutomi showed a MAP-based SR using the av-

erage image with the weight can be calculated fast with high

performance [3]. Kudoh et al. tried to restore the average

image without iterative operations [4]. However, boundary

distortion is occurred on the reconstructed image.

Symmetric convolution is a convolution between symmet-

rically extended sequences using discrete cosine transform

(DCT) or discrete sine transform (DST) [5]. The authors in

the present paper showed that a linear convolution can be cal-

culated using symmetric convolution in the DCT domain with

lower computational complexity than using discrete Fourier

transform (DFT) [6].

In the present paper, we propose a non-iterative SR im-

age reconstruction technique. We use the average image for

Fig. 1. Image acquisition model. Multiple LR images

gi(l1, l2) for i = 1, . . . ,K are captured through a degrada-

tion process from an HR image f(n1, n2).

the closed form solution. The MAP-based cost functional is

defined using symmetric convolution in the DCT domain so

that the reconstructed image holds the smoothness around the

boundary. We discuss the appropriate type of DCT to be ap-

plied to each sequence for symmetric convolution. Experi-

mental results show the effectiveness of the proposed tech-

nique.

2. PRELIMINARY

2.1. Image acquisition model

Observed LR images are degraded by warping, blurring,

down-sampling an HR image, and they are corrupted by ad-

ditive noise as shown in Fig. 1. The i-th LR image gi(l1, l2)
is expressed in matrix-vector form as

−→gi = [D][Bi][Wi]
−→
f + −→ni (1)

where −→gi ,
−→
f , −→ni denote the lexicographically ordered i-th LR

image vector, HR image vector, i-th noise vector, respectively,

and [D], [Bi], and [Wi] represent a decimation matrix, the i-th
blur matrix, and the i-th warp matrix.
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Fig. 2. Average image with HR grid. A black circle expresses

a value of a registered LR image, and a white circle represents

the average of the values of multiple registered LR images.

2.2. MAP-based SR and constrained least squeas

The cost functional of a MAP-based SR is defined as

E(f) =
K∑

i=1

||[Hi]
−→
f −−→gi ||2 + λ||[C]

−→
f ||2 (2)

where [Hi] = [D][Bi][Wi], λ denotes the regularization pa-

rameter, ||x|| denotes the l2 norm of x, and [C] is a priori

knowledge matrix. Commonly, a high-pass filter is used

as a priori knowledge, which suggests that most images

are smooth. Since the cost functional in (2) is convex and

differentiable, a unique estimate can be found by iterative

techniques such as steepest-descent algorithm.

2.3. Average image

An average image is introduced for fast SR algorithm [3][4].

The average image, ga(n1, n2), is defined as

ga(n1, n2) =
1

w(n1, n2)

K∑
i=1

∑
(t1,t2)∈D(n1,n2)

ĝi(t1, t2) (3)

where D(n1,n2) represents a 2d × 2d range centered on

(n1, n2), d denotes a half sample of the HR image, ĝi(t1, t2),
t1, t2 ∈ R, is the i-th registered LR image, and w(n1, n2) is

the number of elements in D(n1,n2) as shown in Fig. 2.

2.4. Symmetric convolution

Symmetric convolution yields a linear convolution of sym-

metrically extended sequences [5]. It is achieved using DCT

or DST without augmenting the original sequences.

Symmetric convolution of h(n) with x(n) is defined as

y(n) = h(n) � x(n) = (εa[h(n)] ∗ εb[x(n)])R(n) (4)

where the operator ‘�’ denotes symmetric convolution, εa

and εb denote the symmetric extension operators for inputs

h(n) and x(n), respectively, the operator ‘∗’ denotes convo-

lution, and R(n) is a rectangular window that extracts repre-

sentative samples.

Equation (4) can be calculated as

y(n) = T−1
c [Ta[h(n)] × Tb[x(n)]] (5)

where Ta and Tb are the corresponding DCT or DST for

h(n) and x(n), respectively, the operator ‘×’ is element-by-

element multiplication, and T−1
c is the appropriate inverse

transform that is uniquely determined from the combination

of Ta and Tb. DCT and DST are subdivided and 40 distinct

combinations of Ta and Tb with their inverse transforms are

derived.

3. PROPOSED TECHNIQUE

We propose an SR image reconstruction technique.

The assumption is that the average image is available and

that we know the information about a common point spread

function (PSF) that is modeled as a low-pass filter and noise

characteristics.

3.1. Cost functional and closed form solution

The cost functional of the proposed technique is defined using

the average image and symmetric convolution in which only

the reconstructed image is extended symmetrically not both

inputs in order to suppress boundary distortion.

Let f(n1, n2) be an HR image of size N × N that we

desire to reconstruct. The cost functional E(f) is defined as

E(f) = ||pq(n1, n2) � f(n1, n2) − ga(n1, n2)||2
+ α||cq(n1, n2) � f(n1, n2)||2 (6)

where α denotes the regularization parameter, pq(n1, n2) is

a quarter of PSF p(n1, n2) of size Lp × Lp, ga(n1, n2) ex-

presses the average image of the same size as f(n1, n2) ac-

cording to (3), and cq(n1, n2) is a quarter of a high-pass filter

c(n1, n2) of size Lc × Lc.

The use of a quarter of a PSF and a high-pass filter pro-

vides the desirable effect of symmetric convolution. If a PSF

of size 5 × 5 is

p(n1, n2) =

⎡
⎢⎢⎢⎢⎣

Y Y Y Y Y
Y X X X Y
Y X C X Y
Y X X X Y
Y Y Y Y Y

⎤
⎥⎥⎥⎥⎦ (7)

then, the quarter of the PSF is defined as

pq(n1, n2) =

⎡
⎣C X Y

X X Y
Y Y Y

⎤
⎦ (8)

where C = pq(0, 0) denotes the value at the center of PSF,

and X and Y denote arbitrary values. cq(n1, n2) is obtained

in the same way as pq(n1, n2) is in (8).
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Table 1. Type of DCT for each sequence.

sequence (N × N ) zero-padded pq(n1, n2) zero-padded cq(n1, n2) ga(n1, n2) f(n1, n2)

proposed 1 DCT-1 DCT-1 DCT-1 DCT-1

proposed 2 DCT-1 DCT-1 DCT-2 DCT-2

corresponding DCT coeff. PC(k1, k2) CC(k1, k2) GC(k1, k2) FC(k1, k2)

From (4) and (5), the cost functional in (6) can be ex-

pressed in the DCT domain as

E(FC) =
N−1∑
k1=0

N−1∑
k2=0

{(PC(k1, k2)FC(k1, k2)−GC(k1, k2))2

+ α(CC(k1, k2)FC(k1, k2))2} (9)

where FC(k1, k2), GC(k1, k2), PC(k1, k2), and CC(k1, k2)
denote the corresponding DCT coefficients of f(n1, n2),
ga(n1, n2), pq(n1, n2), and cq(n1, n2), respectively. The

details are discussed in the next subsection.

To find the solution that minimizes E(FC), the derivative

of E(FC) must be

∂E(FC)/∂FC(k1, k2) = 0. (10)

It yields for k1, k2 = 0, 1, . . . , N − 1,

FC(k1, k2)=
PC(k1,k2)

PC(k1,k2)2+αCC(k1,k2)2
GC(k1,k2). (11)

Thus, we can obtain the closed form solution. Therefore, ap-

plying the inverse DCT to FC(k1, k2) in (11), we can recon-

struct an HR image without iterative operations.

3.2. Appropriate type of DCT

Let us consider which type of DCT should be applied to each

sequence.

DCT is the collective term of discrete transforms using

cosine as bases. There are four distinct types of DCT accord-

ing to underlying extension which relates to DFT as shown in

Fig.3. Derivation of (5) is based on this relation.

From the aspect of PSF, PC(k1, k2) should be Type 1

DCT ( DCT-1) coefficients. Accordingly, PC(k1, k2) is gen-

erated by applying DCT-1 to zero-padded pq(n1, n2) of size

N × N . In this way, the whole PSF is formed when zero-

padded pq(n1, n2) is extended symmetrically.

In symmetric convolution, there is a constraint that any

pair of types within a class can be convolved but not be-

tween classes [5]. Since a class consists of DCT-1 and DCT-

2, the remaining sequences should be DCT-1 or DCT-2. In

addition, DCT-2 cannot inherently generate high-pass filters.

Therefore, CC(k1, k2) should be DCT-1 coefficients, which

are generated by applying DCT-1 to zero-padded cq(n1, n2).

(a) DCT-1 (b) DCT-2

(c) DCT-3 (d) DCT-4

Fig. 3. Symmetric periodic sequence corresponding to four

types of DCT. The DCT coefficients of a sequence expressed

as black circles correspond to the DFT coefficients of the

symmetrically extended sequence expressed as solid lines.

Under the above constraint, GC(k1, k2) should be DCT-

1 or DCT-2 coefficients. When GC(k1, k2) is DCT-1,

FC(k1, k2), the product of DCT-1 and DCT-1, is defined

as DCT-1 by (5). Accordingly, the estimated HR image,

f(n1, n2), is obtained by applying the inverse DCT-1 to

FC(k1, k2). When GC(k1, k2) is DCT-2, FC(k1, k2) is

DCT-2. f(n1, n2) is obtained from the inverse DCT-2 of

FC(k1, k2). The type of DCT (see the Appendix) applied to

each sequence is summarized in Table 1.

4. SIMULATIONS

The proposed technique is performed to evaluate the recon-

structed images.

A total of 32 frames of LR images of size 128× 128 were

shifted by one of the shifts {(0, 0), (0, 0.5), (0.5, 0), (0.5, 0.5)},

blurred with a common PSF of a 9×9 Gaussian kernel of zero

mean and a variance of 1.3, and down-sampled by a factor of

two in both the horizontal and vertical directions. In addition,

Gaussian noise of zero mean and the standard deviation of

0.01 was added to each LR image.

Figure 4 shows HR images reconstructed by bicubic

interpolation of one of the LR images, a fast Fourier trans-

form (FFT)-based technique, and the proposed technique in

Table 1, in which the regularization parameter was set to

0.0003 and a four-point neighborhood Laplacian was used as

1275



(a) Bicubic interpolation (b) FFT-based

PSNR = 24.00[dB] PSNR = 24.74[dB]

(c) proposed 1 (d) proposed 2

PSNR = 32.32[dB] PSNR = 32.42[dB]

Fig. 4. Reconstructed HR image (256 × 256 Barbara).

c(n1, n2). In the FFT-based technique, the HR image was

restored by constrained least squares method [7] as

F (k1, k2)=
P ∗(k1, k2)

(|P (k1k2)|2+α|C(k1,k2)|2)Ga(k1,k2) (12)

where F (k1, k2), P (k1, k2), Ga(k1, k2), and C(k1, k2) are

the corresponding DFT coefficients of f(n1, n2), p(n1, n2),
ga(n1, n2), and c(n1, n2), respectively, and P ∗(k1, k2) is the

complex conjugate of P (k1, k2). Low PSNR in FFT-based

technique is caused by the ringing around the image bound-

ary, although the reconstructed image is far improved com-

pared to the bicubic-interpolated image. Conversely, an edge-

preserving image is obtained without the boundary distortion

in the proposed technique. Table 2 shows the PSNR of other

reconstructed images. We can confirm that the proposed tech-

nique is effective for SR image reconstruction.

5. CONCLUSION

We have proposed a non-iterative SR image reconstruction

technique. The use of the average image reduces the problem

of SR image reconstruction to that of image restoration. We

use symmetric convolution in order to suppress the bound-

ary distortion. We have considered the appropriate type of

DCT to be applied to each sequence for symmetric convo-

lution. The use of DCT is advantageous in that symmetric

Table 2. PSNR [dB] of HR image for the original image.

256 × 256 proposed
image bicubic FFT-based 1 2

couple 28.13 25.80 33.06 33.18
boat 25.18 23.33 31.51 31.51

airplane 27.81 25.47 34.31 34.28
sailboat 28.09 24.11 32.73 32.79

Lena 26.94 23.98 32.92 32.95
baboon 25.66 25.62 29.37 29.33

convolution can be calculated simply and quickly without ex-

tending the image and that DCT has fast algorithms with real

numbers. We have shown the effectiveness of the proposed

technique.
6. APPENDIX

The matrix form of DCT-1, DCT-2, and their inverse denoted

as [C1], [C2], and [·]−1, respectively, is given below [5].

[C1] = 2cn cos
(

πkn

N

)
, k, n = 0, 1, . . . , N

[C1]−1 =
1

2N
[C1]

[C2] = 2 cos
(

πk(n + 1
2 )

N

)
, k, n = 0, 1, . . . , N − 1

[C2]−1 = 2ck cos
(

πk(n + 1
2 )

N

)
, k, n = 0, 1, . . . , N − 1

cp =
{

1/2, p = 0 or N
1, p = 1, 2, . . . , N − 1 .
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