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ABSTRACT
In this paper, we propose an iterative Wiener filter which can 
simultaneously perform interpolation and restoration by using non-
local means to directly model the correlation between the desired 
high-resolution image and observed low-resolution image. A novel 
mechanism is proposed to control the decay speed of the 
correlation function while iteratively updating both estimated 
correlation and high-resolution image. During the iterations, the 
image is decomposed into patches with similar intensities at initial 
iterations and the patches are connected naturally with good 
convergence. Experimental results show that the proposed 
algorithm is able to produce natural image structures, and provides 
better PSNR and visual quality than the state-of-the-art algorithms 
using the sparse representation and natural image priors.   

Index Terms—Iterative Wiener filter, super-resolution 
 

1. INTRODUCTION 
Single image super-resolution reconstruction (SRR) aims to 

restore a high-resolution (HR) image from an observed low-
resolution (LR) images. Let us consider an observation model 
which describes the image formulation process without 
considering the additive image noise [1-5]. Throughout this paper, 
an image is represented in columnwise lexicographically ordered 
vector notation for convenience. Let x represent the observed 
image, where the size of x is [n×1]. We assume that the observed 
image is the result of uniform decimation D and space invariant 
linear blur H performed on a high-resolution image represented by 
y, which has the size of [s2·n×1]. Turning the above descriptions 
into an analytical model, we have 

DHyx                                        (1) 
where the decimation D depends on the magnification factor and 
the blur H is often assumed known or can be approximated due to 
the knowledge of camera PSF [6].

In the literature, many algorithms were proposed to estimate 
the desired HR image from an observed LR image. Due to an 
infinite number of solutions that can formulate the same LR image, 
SRR is well known to be an ill-posed problem. Reconstruction-
based algorithms [1, 6-8] apply natural image priors to regularize 
the solution to more likely to be the desired image. Training-based 
algorithms [4-5, 9] use online and offline dictionaries to provide 
additional information of natural images. Recent algorithms often 
utilize both natural image priors and dictionary to provide better 
results [2-3, 10]. Specifically, the algorithm [10] using the adaptive 
sparse domain and adaptive regularizations shows much better 
results than the sparse representation [9] and natural image priors 
[7-8] in terms of PSNR and visual quality. Hence, it is used [10] to 
compare with our comparison.  

In this paper, we propose an iterative algorithm to estimate 
the desired HR image using the classic Wiener filter. The 
contribution of this paper is two folded. First, we verify the use of 

non-local means as the correlation function to directly model the 
correlation between the desired HR image and observed LR image 
with successful results, such that the Wiener filter can 
simultaneously perform interpolation and restoration. Second, we 
propose a novel mechanism to control the decay speed of the 
correlation function within the iteration loops of the Wiener filter. 
At initial iterations, the image is decomposed into rough patches 
with similar intensities by putting the correlation function to decay 
quickly. As the Wiener filter iterates, the patches will be connected 
naturally by lowering the decay speed of the correlation function. 
As a result, natural image structures will be produced and the 
proposed algorithm is not dependent on the initial estimation of 
HR image.  

Compared with the available correlation-based algorithms 
[11-12], the proposed algorithm uses a novel mechanism to 
iteratively reconstruct the natural image structures by updating the 
varying correlations. The adaptive Wiener filter [11] uses a wide-
sense stationary correlation function to model the correlation 
between pixels according to the geometric distance. It is good that 
the Gaussian process regression [12] verifies that the non-local 
means [13] can model the correlation in either interpolation or 
restoration process; however this algorithms relies on the initial 
estimation of the HR image to model the correlation.  

Experimental results show that the proposed algorithm 
provides both better PSNR and visual quality than the available 
correlation-based algorithms [11-12] and the recently proposed 
adaptive sparse domain selection algorithm [10]. The rest of the 
organization of this paper is as follows. Section 2 shows the 
proposed algorithm with the explanation referring to the classic 
Wiener filter and the proposed correlation function. Section 3 
gives the experimental results and section 4 concludes the paper. 

2. ITERATIVE WIENER FILTER FOR SR 
2.1 Classic Wiener filter 

The proposed iterative Wiener filter estimates the desired HR 
image block-by-block. Let i be the block index, and the block size 
depends on the magnification factor s, i.e. block size=s×s.
Consider the classic Wiener filter which minimizes the linear mean 
squared error, shown below 

iii PRW 1                                          (2) 
where the filter weight Wi is related with the autocorrelation 
matrix Ri for the observation vector and cross-correlation matrix Pi

for the desired vector and observation vector. To simultaneously 
perform interpolation and restoration, the desired vector yi is 
defined as pixels inside a block in the desired HR image y and 
observation vector xi is defined as pixels geometrically closest to 
the desired vector in the observed LR images x. Figure 1 shows an 
example of these definitions. The Wiener filter estimates the 
desired vector by 

i
T
ii xWŷ                                          (3) 
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and the desired image can be estimated by }ˆ{ˆ iyy .

Figure 1: An example illustrating the observation vector xi and the 
desired vector yi when s=3 and size of xi is 16.

2.2 Correlation function using non-local means 
In this section, we present the proposed correlation function 

for simultaneous interpolation and restoration. Let us consider the 
definitions of auto-correlation matrix and cross-correlation matrix 

}{ T
iii E xxR  and }{ T

iii E yxP                       (4) 
Due to the normalization of filter weights as in [11], i.e. each 

column of Wi is summed to 1, the normalized correlation functions 
can be used. Let us use the non-local means [13] to model the 
normalized correlation functions for the correlation matrices 

/)(),(
2
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kj exxr   and /)(),(
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kj eyxp     (5) 
where {xj,xk} xi and {yk} yi. The expected squared difference 
between two pixels, E(xj-xk)2, is computed using surrounding 
pixels within a local window which has a size of m×m. The 
surrounding pixels of xi and yi are located on the blurred HR image 
and desired HR image respectively. The variance  controls the 
decay speed of the correlation function, which is a crucial 
parameter of the proposed algorithm.

2.3 Varying decay speed of the correlation function 
Due to the fact that the proposed correlation function depends 

on both desired HR image and blurred HR image, we propose an 
iterative Wiener filter to update both estimated HR image and 
correlation matrices iteratively as in the classic iterative Wiener 
filter [15]. During the iterations, a novel mechanism is proposed to 
vary the decay speed (variance ) of the correlation function, such 
that the iterative Wiener filter can recover the natural image 
structures and always converges to the same result regardless of 
the initial estimation.  

The algorithm flow of the proposed iterative Wiener filter is 
shown in Algorithm 1. At the end of an iteration of the Wiener 
filter, we apply the classic iterative back-projection (IBP) [14] to 
refine the result to fit the image model in (1). Depending upon the 
spread of blur H and magnification factor s, IBP usually converges 
in less than three iterations, where the factor  is set to a value less 
than 1 for stability. The iterative Wiener filter terminates when the 
variance  reaches a threshold meeting the desired decay speed of 
correlation function. 

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Algorithm: Wiener(x)
1. Initialization

(a) Initialize the estimation )(ˆ 0y  of the desired HR image. 

(b) Create a blurred HR image using )(ˆ 0yH .
(c) Set the initial value of variance in (5) to =u.

2. Iterate on n until the value of variance  exceeds a threshold T.
(a) Compute the correlation matrices in (4) using the 
estimated HR image )(ˆ ny  and blurred HR image )(ˆ nyH .
(b) Use the computed correlation matrices to update the 
estimated HR image to )(ˆ 1ny .

(c) Iterative back-projection [14] to refine the estimated HR 
image )(ˆ 1ny  to fit the image model in (1): 

)ˆ(ˆˆ )()()( xyDHDHyy 111 nTTnn .

(d) Update the blurred HR image using )(ˆ 1nyH .
(e) Update the variance  using =u·p(n+1)·(n+1)/ .
(f) Repeat 2(a) to 2(e) until termination.

Algorithm 1: Iterative Wiener filter for super-resolution 

2.4 Recover the natural image structures 
Figure 2 show portions of the Lena image during iterations. 

Initially, the variance  is set to a small value which implies that 
the correlation function decays very quickly, such that the pixels 
with similar intensities are grouped into patches, as shown in 
figures 2(c) and 2(d). Such grouping of patches is very rough 
initially and there are explicit boundary effects (similar to color 
quantization effect) between difference patches. As the Wiener 
filter iterates, we increase the variance  exponentially to increase 
the correlation between patches, such that the patches will be 
connected smoothly. By carefully choosing the decay speed 
initially and the speed of increment of decay speeds during the 
iterations, natural image structures will be produced by the 
iterative Wiener filter. Figure 2 shows that the image structures are 
reconstructed well progressively.  

Table 1 shows that the proposed algorithm always converges 
to the same result regardless of the initial estimations using IBP 
with nearest neighbor interpolation [14], adaptive Wiener filter [11] 
and adaptive sparse domain selection [10]. This result confirms 
that the proposed mechanism is strong at re-synthesizing the image 
structure at initial iterations and converging it into the natural 
image structure. 

Table 1: PSNR (dB) using different initial HR images 
Initial image Initial 1st 3rd 5th 7th 8th

IBP w/ NN [14] 28.642 30.36 30.696 31.396 32.691 32.721 
AWF [11] 31.5 30.67 30.757 31.409 32.695 32.729 
ASDS [10] 32.696 30.764 30.78 31.415 32.7 32.73 

(a) Original (b) Initial [14] (c) 1st iteration 

(d) 3th iteration (e) 5th iteration (f) 8th iteration 
Figure 2: Portions of the estimated Lena image using the proposed 

algorithm at different iterations. 
2.5 Optimizing the parameters 

Due to the iterative scheme, the proposed algorithm has 
several parameters which are optimized empirically and verified 
through the cross-validation. The parameters are mostly invariant 

Pixels in xi

Pixels in yi
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to the magnification factor s and blur H (unless otherwise specified) 
according to our experiments. Table 2 shows the explanation and 
suggested values of these parameters. Using the suggested values, 
the proposed algorithm always converges at the 8th iteration.

Table 2: The parameters of the proposed algorithm. 
Parameters Suggested  

value
(a) The number of input (size of xi) is the balance of the 
stability and localization. More inputs can provide a more 
stable result but reduce the local adaptation. 

16

(b) The window size (m×m) for the correlation function 
depends on the magnification factor s because a large 
magnification factor involving more unreliable pixels 
requires a large window to provide an accurate result. 

(2s+1)×(2s+1)

(c) Initial value (u) of the variance  determines how 
aggressive the image decomposition into patches is at 
initial iterations. 

2.5 

(d) Power of increment (p) increase the variance  by 
orders, which can ensure a fast convergence to meet the 
termination threshold T.

e (=2.72) 

(e) The parameter ( ) is a complementary parameter of 
the power function to control the increment of variance .

4.5 

(f) The termination threshold (T) determines the number 
of iterations. 

1.5·105

Table 3: PSNR (dB) and SSIM [16] using different algorithms 
Images IBP [14] AWF [11] GPR [12] ASDS [10] Proposed 

Bike
22.9

1 
0.71

6 
22.9

7 
0.72

0 
22.3

9 
0.66

8 
23.7

2 
0.75

8 
23.9

2
0.76

0
House 20.4

2 
0.64

2 
20.3

8 
0.63

8 
20.1

0 
0.60

7 
20.5

1 
0.65

4 
20.7

5
0.66

4
Game 25.7

5 
0.74

0 
25.7

8 
0.74

1 
25.2

5 
0.70

3 
26.2

2
0.75

6
26.1

9 
0.75

4 
Statue 28.7

3 
0.83

8 
28.7

9 
0.84

1 
28.2

7 
0.81

6 
29.3

3 
0.85

4 
29.3

8
0.85

7
Woman 25.7

4 
0.76

3 
25.7

9 
0.76

7 
25.2

5 
0.71

8 
26.1

1 
0.77

7
26.2

5
0.77

7
Lighthous

e
23.7

6 
0.75

6 
23.7

2 
0.75

3 
23.4

4 
0.73

2 
23.8

9 
0.76

7
23.9

4
0.76

7
Parrot 30.5

6 
0.90

9 
30.7

0 
0.91

0 
29.5

0 
0.89

7 
31.4

9 
0.91

8 
31.7

1
0.91

9

Lena 
31.3

3 
0.87

9 
31.5

0 
0.88

1 
30.7

7 
0.86

4 
32.7

0 
0.89

2
32.7

2
0.89

2
Average 26.1

5 
0.78

0 
26.2

0 
0.78

1 
25.6

2 
0.75

1 
26.7

4 
0.79

7 
26.8

6
0.79

9

3. EXPERIMENTAL RESULTS 
To give the subjective and objective performance evaluation 

of the proposed algorithm (using the suggested values of 
parameters in Table 2), extensive experiments have been carried 
out. The algorithms for comparison include the iterative back 
projection (IBP) (using bicubic interpolation as the initialization) 
[14], the adaptive Wiener filter (AWF) [11], the Gaussian process 
regression (GPR) [12] and the adaptive sparse domain selection 
(ASDS) [10]. The reference algorithms [11, 14] and the proposed 
algorithm were implemented using MATLAB, while the codes of 
the other algorithms [10, 12] were provided by the respective 
authors. The system for evaluating the algorithms is an Intel i7 950 
system. 
       Eight natural images were used for the evaluation. The images 
formulate the observed LR images using image model in (1). The 
magnification factor s used is 3 as in [6, 10] and the blur H is a 
3×3 uniform blur as in [6]. Table 3 shows that the proposed 
algorithm obtains the highest PSNR and SSIM [16] results among 
different algorithms. Due to bigger image sizes (around 512×512) 
and some test images (house, game and lighthouse) containing 
complex structures, the differences of PNSR and SSIM values are 

not significant as in [10]. Furthermore, the proposed Wiener filter 
is readily extended to the parallelization by computing blocks by 
blocks independently, as explained in [11].  

Subjective evaluations are shown by the portions of the 
estimated images in figures 3. In figure 3, the proposed algorithm 
always produces the most natural image structures compared with 
the original image. ASDS [10] produces some jags and aliased 
effects around the edges while AWF [11] and GPR [12] generally 
cannot handle edges well although the PSNR values of AWF [11] 
are not far lower than that of the proposed algorithm. The results 
generally agree with the SSIM values in Table 3, while the image 
structures look natural and most pleasure, by using the proposed 
algorithm.  

4. CONCLUSION AND DISCUSSION 
In this paper, we propose a new iterative Wiener filter for the 

single image super-resolution. A novel mechanism is proposed to 
control the decay speed of the correction function during iterations. 
During the iterations, the image is decomposed into patches with 
similar intensities at initial iterations and the patches are connected 
naturally when convergence. Experimental results show that the 
proposed algorithm can produce natural image structures with high 
fidelity, such that it obtains the highest PSNR and visual quality 
among the state-of-the-art algorithms using some natural images. 

One possible future direction is to exploit the adaptive size of 
input (xi) and adaptive window size (m×m) according to local 
image statistics. We have tried to adaptively select the inputs 
(within different local regions) which have the highest correlations 
with desired pixels using the correlation function in (5); however, 
very limited PSNR improvements are shown, i.e. 0.01 dB. This 
result may confirm that a small number of local inputs are 
sufficient to reconstruct the image structures. Hence, extending the 
proposed algorithm to multi-frame super-resolution is not 
straightforward or not by just adding inputs from other frames. 
Furthermore, in order to consider additive noise in the image 
model in (1), one may consider changing the variance of the non-
local means function (i.e. correlation function) as in some 
denoising [13, 17] and super-resolution algorithms [6]. Although a 
systematic study of optimal parameters in case of the noisy 
situation and the restoration only situation are not included in this 
paper, the proposed algorithm is indeed extendable to these 
applications.
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