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ABSTRACT 

 
In this paper, we propose a novel patch-based face-hallucination 
algorithm, which is based on the local structure kernels 
established via the relation between interpolated low-resolution 
(LR) images and their corresponding high-resolution 
counterparts. In our algorithm, the local linear embedding (LLE) 
algorithm is used to extract local structures, and the kernels are 
then constructed based on non-overlapped patches in the 
interpolated LR images. The information about local structures 
as described by the kernels is propagated to the corresponding 
regions of the HR images. Sub-pixel distortions are refined by 
solving a constrained problem at pixel level via iterative 
procedures. Experimental results show that our proposed 
method can provide a good performance in terms of 
reconstruction errors and visual quality.  

 
Index Terms— face hallucination, local structure, 

eigentransformation 

 
1. INTRODUCTION 

 
In most digital-imaging applications, high-resolution (HR) 
images are preferred or needed, especially in human face 
recognition, video surveillance, high-definition TV, etc. 
However, the facial images captured are often of low-resolution 
(LR) and blurred. Face-hallucination techniques have been 
introduced, and reconstruction- and learning-based algorithms 
[1] are usually employed to reconstruct HR images from LR 
observations. The former class also refers to the 
interpolation-based method, which aims to generate HR images 
based on the information given in a single image. However, in 
recent years, learning-based methods which employ training sets 
to generate the target HR images have achieved great success, 
and thereby demonstrating the advantages of edge preserving 
and details’ reconstruction. In [2], Freeman et al. proposed the 
framework which utilizes the Markov random field to search for 
suitable patches by using maximum a posteriori (MAP). Spatial 
consistency between adjacent patches is then refined by using 
belief propagation. Fan et al. [3] further improved the 
algorithms by introducing primitive manifold learning in 
extracting the local-structure information. A certain number of 
neighbors are searched based on the Euclidean distance for a 
certain input visual feature, and a linear regression is used to 
characterize the relationship between the testing visual features 
and those of the neighbors. The same weights are projected to 
the corresponding HR patches in order to obtain the target 
reconstructed results. Ma et al. [5] approached the problem via 
extracting the relation between LR and HR patches in the same 
region based on the LLE algorithm [4].  

However, both [3] and [5] are focused on reconstructing a 
single patch at a given position without taking into account the 

neighboring patches defined by geometric distances. This may 
cause structural errors or distortions in the feature shape of the 
local prior. Although [3] searches neighboring patches for a 
testing input, the neighborhood is defined using the Euclidean 
distance, i.e. the L2 norm. Hence, the selected neighbors are 
possibly the patches at the same position of the reference 
samples. A similar method is used in [5]. In other words, both 
[3] and [5] aim to extract information to reconstruct the local 
prior based on reference samples with the least Euclidean 
distance, instead of based on the local information in the LR 
input image.  

In our proposed method, the face-hallucination problem is 
tackled by using a two-stage patch-reconstruction approach. The 
first stage is to estimate an initial HR version of a LR face 
image based on a patch-based eigentransformation method. The 
estimated HR face images reconstructed will exhibit some 
local-structure distortion. Thus, in the second stage, based on 
the initially estimated results, the local structure is refined by 
the local prior extracted from the interpolated LR input and 
training images. We define a local region composed of nine 
patches, and we use the LLE method to derive the local prior for 
each patch with respect to its neighbors in the same region. 
Finally, we project the local priors back to the corresponding 
patches obtained in the first stage via an iterative reconstruction. 

The remainder of this paper is organized as follows. In 
Section 2, the details of our proposed method are presented, as 
are its advantages. In Section 3, the experimental results based 
on our proposed method and several related algorithms are 
demonstrated, and finally a conclusion is given. 
 

2. PROPOSED ALGORITHM 
 
2.1 Stage I: Reconstruction using patch-based eigen- 

transformation 
 
As described in the previous section, we implement two-stage 
reconstruction. In the first stage of reconstruction, we target the 
reconstruction of the HR counterparts from their LR face 
images using only patch-based eigentransformation. Depending 
on the magnification factor under consideration, pixels in the 
interpolated input image and the corresponding ground-true HR 
image may have a small misalignment, which results in 
local-structure distortions; we neglect this misalignment at this 
stage, and compensate for it in the second stage. Moreover, 
facial images possess great similarity in terms of overall 
structure, i.e. all face images have the same facial features with 
a similar relative position. By concatenating pixels in a patch in 
lexicographical order to form a vector, a pixel-to-pixel 
correspondence between two patches at the same position in 
both an interpolated LR face image and the HR counterpart can 
be established. This correspondence between an interpolated LR 
patch and the corresponding HR patch can be viewed as a 
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mapping function or a kernel, denoted as Ti, i.e. 

 iii hTl , (1) 

where i denotes the index of the patches, and il  and ih  
represent the interpolated LR patch and the HR patch at the 
same position, respectively. 

Such a correspondence exists between all the patches in the 
interpolated LR image and its ground-true HR image, but the 
kernel function to be estimated is different for different patch 
positions. As in [7], patch-based eigentransformation is 
employed in our algorithm so that the HR patches can be 
reconstructed without requiring an estimation of the kernel Ti. 
Consider a training set of face images which contains pairs of 
LR and HR face images. The LR training samples are 
interpolated to the same size as the HR face images, and these 
interpolated LR images are denoted as } ..., , ,{ 21 Nlll , where N 
is the number of training pairs. The corresponding HR face 
images are denoted as } ..., , ,{ 21 Nhhh . Each image in the 
training set is divided into overlapped patches. The ith patches of 
the interpolated LR images and the corresponding HR images 
are denoted as } ..., , ,{ 21 N

iii lll  and }, ..., , ,{ 21 N
iii hhh  

respectively. These two sets of interpolated LR patches and HR 
patches are represented as two matrices, having the patches 
arranged as columns, as follows: 

 
N
iiii lllL 21  and N

iiii hhhH 21 . (2) 

Using eigentransformation [6], the ith interpolated patch of 
a LR face image can be considered as a linear combination of 
the interpolated LR patches as follows: 

 ,
1

ii

N

j

j
i

j
i

t
i cLlcl  (3) 

where 
TN

iii ccc 1  and T is the transpose operation. 
The coefficients ci contributed by each patch in the training set 
can be explicitly expressed as follows: 

 iiii wVc 2/1 , (4) 

where iV  and i  are the eigenvectors and the corresponding 
eigenvalues of the covariance matrix ,iLT

iL  and iw  are the 
weights for the input interpolated LR patch t

il  projected onto 
the eigenspace spanned by the eigenvectors of T

iLLi . 
According to LLE [4], we can assume that a LR patch 

contains the intrinsic feature of the corresponding HR patches. 
Therefore, the prior knowledge reflected in the LR samples can 
be used to reconstruct the HR data. Hence, the coefficients that 
each interpolated patch in the training set contributed to the 
testing input can be applied to their HR counterparts, which can 
be estimated as follows: 

 .ˆ
1

ii

N

j

j
i

j
i

t
i cHhch  (5) 

As this is a patch-based approach, blocky artifacts may appear 
in the reconstructed HR images. In order to reduce the artifacts, 
the patches involved are overlapped by 50% with adjacent 
patches, and the pixels in the overlapped regions are merged 
based on the algorithm proposed in [12]. When all the estimated 
HR patches have been estimated, the initial estimated results 

H
tÎ  are generated. 

 
 

2.2 Stage II: Patch-based local structure refinement 
 
As mentioned previously, the sub-pixel misalignments are 
ignored in the first stage. Hence, in this stage, we aim to derive 
local kernels, which can help to constrain the patch-based 
reconstruction and thus reduce the existing misalignments. 
Based on the work in [2] and [3], the interpolated LR images 
can retain their structural information. This means that we can 
initially estimate the structural information about the target HR 
image from its interpolated counterpart. Moreover, according to 
the framework of LLE [4], the structural information of a 
dataset can be preserved via the embedding, extracted based on 
the neighbors. However, unlike the neighbors defined in [3] and 
[4], we use locally derived metrics instead of the Euclidean 
norm.  
 
2.2.1. Determination of local prior 
 
In our method, we consider nine non-overlapped patches, 
arranged in 3×3 patches, to form a local region  in deriving the 
embedding, i.e. the contribution of the eight neighboring 
patches to the patch at the center. This embedding t

jiw ,  can be 
determined as follows: 

 

1..minarg ,

2
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1
,

, j

t
ji

J

j
j

t
ji

t
i

w
wtslwl

t
ji

, (6) 

where lj   and j = 1, 2, …, J 1.  represents the region used 
to extract the local-structure information, t

il  is the testing 
patch with index i, and J (=9) refers to the number of patches in 

. Note that, to make the representation simple, we still use li 
and t

il  to represent a patch in general and an interpolated LR 
patch, respectively. However, the patch size used in this stage is 
smaller than that used in the first stage. In this stage, the patch 
size is 3 3; this can make a better estimation of the local 
structures. 

According to [4], we define the local Gram matrix G as 
follows: 

 
Tt

i
TTt

ii PlPlG , (7) 

where P is a (J 1)-dimensional column vector of ones,  is a 
)1(JD -dimensional matrix with its column being the 

neighbors defined in the region , and D refers to the number of 
pixels in the local neighboring patch jl . The least-square 
problem can be solved by setting the weights as follows:  

 PGP

PG
w

i
T

it
ji 1

1

, . (8) 

However, the above equation requires an explicit inversion of 
the local Gram matrix. Hence, according to the previous work [3] 
and [5], we can simply solve the system of linear equations as 
follows: 

 1,
t

ji
j

iwG . (9) 

Having determined the local structure of a patch located at 
the center of a region , in order to reduce the blocky artifacts, 
the region is then shifted by one pixel to its next position, where 
the corresponding local structure is extracted. Therefore, the 
patches at the center of adjacent regions overlap with each other, 
as illustrated in Fig. 1. 
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However, as previously illustrated, structural distortions 
also exist between interpolated LR images and the 
corresponding HR ones. To tackle these structural distortions, 
we search similar interpolated LR samples from the training set 
with respect to the input face, and find the corresponding HR 
faces. The distortions can be compensated by referring to the 
HR training samples, which should possess similar local 
structures to the input face in the same region under 
consideration. The neighboring LR samples are selected based 
on the structural similarity, defined using as follows: 

 
tk

tk
ks

2

, (10) 

where  is a small value in order to avoid the denominator being 
zero, tk  is the correlated variance between the testing region 
and the reference region. It is defined as follows: 

 
N

i
k

k
t

t
tk ilil

N 1

2 ))()()((
1

1 . (11) 

 and  denote the mean and standard deviation for the 
corresponding regions used, N is the number of pixels in the 

region under consideration, and )(ilt  and )(ilk  represent the 
ith pixel in the testing region and the kth reference region, 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Extraction of local-structure information: (a) The current 
local region 1 is divided into 3 3 patches, where the local 
embedding of the patch at the center will be determined. The 
next adjacent region 2 is the region 1 shifted to the right by 
one pixel. (b) The local prior t

jiw ,  is determined for the patch 
t
il . 

 
The larger the value of ks , the more similar are the local 

structures of the two regions concerned. Hence, based on the 
value of ks , we search for K pairs of interpolated LR and HR 
samples, and then derive the corresponding weights for both the 
interpolated LR and HR samples in the same region. We define 

L
k

jiw )( ,  and H
k

jiw )( ,  as the weights that patch j contributes to 
the center patch i in the region under consideration for both the 
interpolated LR and HR samples, respectively, and the ratio 
between H

k
jiw )( ,  and L

k
jiw )( ,  as k

ji, , i.e. 

 
L

k
ji

H
k

jik
ji w

w

)(
)(

,

,
, . (12) 

Moreover, it is expected that the estimated ratio for the target 
HR image is more dependent on the samples with a larger 

structural-similarity index ks . Hence, we establish a penalty 

function with its coefficients proportional to the value of ks , as 
follows: 

 
K

k
k

k
k

s

s
p

1

. (13) 

Finally, we use a Gaussian distribution to characterize the 
relation between the reference sample and the target difference 
ratio t

ji,  expected to be generated as follows: 

 
2

,,
, 2

)()(
exp ji

T
jit
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P , (14) 

where 
TK

jijiji ,
1
,,   and } ,... ,{diag 1 KppP , and 

 is the region defined to derive the local prior. The value of 
t

ji,  is the maximum value obtained via the Gaussian 
distribution. Then, the refined weights are computed as follows: 

 t
ji

t
ji

t
ji ww ,,,ˆ . (15) 

 
2.2.2 Iteration Reconstruction 
 
In the previous section, we have derived the local prior using 
(15). In this stage, we aim to propagate the local kernel to the 
initially estimated results so that the distortions in the structure 
can be compensated. This objective can be expressed as a 
least-square problem, as follows: 

 

2

ˆ
,ˆ

ˆˆˆminarg
t
j

t
i h

t
j

t
ji

t
i

h
hwh , (16) 

where t
jĥ  refers to the neighboring patches of the initially 

estimated patch t
iĥ  in region , and t

jiw ,ˆ  is the local prior 

weights learnt in previous stage. According to damped basic 
iterative method illustrated in [8], we can approach the 
least-square problem by simply iterative process to update the 
value of t

iĥ . The distortions in structure can be compensated as 

the pixels in a certain local prior corresponding to the initial 
estimated results are set the same as the local prior extracted in 
the second stage. The updating rule for structure compensation 
can be described as follows: 

 
t
jh

t
vj

t
ji

t
vivi hwhd

ˆ
,,,,

ˆˆˆ , and (17) 

 vi
t
vi

t
vi dhh ,,1,

ˆˆ , (18) 

where vid ,  is the difference between the current estimated 
patch and the best estimated patch in terms of structure 
information, v is the iteration index, t

ih 0,
ˆ  is the initially 

estimated results, and  is the updating step size. 
 

3. EXPERIMENTAL RESULTS 
 
In our experiments, frontal-view face images with neutral 
expression were selected from the CMU [9] database. 68 
distinct facial images were available, and the leave-one-out 

(a) An interpolated LR image (b) Determination of the local prior 

local region 1 
adjacent region 2 

local region 1 

t
il

1l 2l 3l

7l 6l 5l
8l 4l

8

1
,

j
j

t
ji

t
i lwl
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strategy was used to evaluate the performance of our proposed 
method. Based on the framework in [10], the faces are aligned 
based on the positions of the two eyes. The size of the facial 
images in the training set is 100×100, and the LR images are 
obtained through a 7 7 Gaussian kernel and a down-sampling 
factor of 4 in both the vertical and horizontal directions. The 
patch size used in the first stage is 10×10 and the patch size 
used in the second stage is 3×3; the local region selected each 
time is 9×9. The maximum number of iterations used and the 
step size  are set at 10 and 0.05, respectively, which are 
determined by experiments. 

In order to evaluate the effectiveness of proposed 
local-structure kernel, we compare our proposed method with 
bicubic interpolation method, typical patch-based algorithm [2], 
as well as with those methods that employ the relations between 
patches to estimate the HR faces, including the 
neighbor-embedding algorithm [3] and the position-patch 
algorithm [5].  

Fig. 2 shows the results using the different algorithms. 
Those algorithms employing local-structure constraints can 
achieve a better visual performance than typical patch-based 
method [2]. This is mainly due to the fact that the local kernel 
learned from our proposed method can more accurately reflect 
the structural information than using belief propagation only 
can. Compared with [3] and [5], our proposed method is more 
robust in terms of retaining the feature shapes and learning new 
features. The neighbor embedding method will sometimes 
exhibit artifacts, as the neighbors are defined according to the 
Euclidean distance. Patches which do not match the local prior 
may also be identified and embedded into the reconstruction 
results. In [5], the position patches are not further constrained by 
adjacent neighbors; this may lead to dissimilarity to the original 
features. According to the faces shown in the second row, the 
edges of the nose cannot be well reconstructed using the 
position-patch-based method. The quantitative measurements 
for the respective methods are tabulated in Table 1, in terms of 
both PSNR and SSIM [11]. 

 
4. CONCLUSIONS 

 
In this paper, we have proposed a novel face-hallucination 
method based on local-structure constraints learned from 
interpolated LR images, as well as the difference between the 
interpolated LR and HR samples. We define a local region 
composed of nine patches, and derive the embedding weights 
for each patch with respect to its neighbors in a region. The 
embedding weights are applied to the initially estimated results, 
which are obtained using patch-based eigentransformation. 
Finally, we use an iterative process to propagate the local 
kernels learned for the patches to the initially estimated results. 
Experimental results show that our method can produce a good 
performance in terms of both visual quality and reconstruction 
errors.  

 
 PSNR (dB) SSIM 

Bicubic interpolation 24.5329 0.6731 

Freeman’s method 25.3661 0.6749 

Neighbor embedding 28.6860 0.7709 

Position patch 27.1966 0.7232 

Proposed method 28.9086 0.7803 

Table.1 PSNR and SSIM of the respective methods based on the 
CMU database. 

 

 

 

 
(a)     (b)      (c)      (d)      (e)      (f) 

Fig. 2. HR face reconstruction results rendered by different 
algorithms based on the CMU database: (a) Bicubic 
interpolation, (b) Freeman’s method [2], (c) 
Neighbor-embedding method [3], (d) Position-patch method [5], 
(e) Our proposed method, and (f) Ground-true images. 
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