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ABSTRACT 
 

In this paper, a new two-step method is proposed to infer a high-
quality and high-resolution (HR) face image from a low-quality 
and low-resolution (LR) observation based on training samples in 
the database. First, a global face image is reconstructed based on 
the non-linear relationship between LR and HR face images, which 
is established according to radial basis function and partial least 
squares (RBF-PLS) regression. Based on the reconstructed global 
face patches manifold (formed by the image patches at the same 
position of all global face images), whose local geometry is more 
consistent with that of original HR face patches manifold than 
noisy LR one is, the Neighbor Embedding is applied to induce the 
target HR face image by preserving the similar local geometry 
between global face patches manifold and the original HR face 
patches manifold. A comparison of some state-of-the-art methods 
shows the superiority of our method, and experiments also demon-
strate the effectiveness both under simulation and real conditions. 

Index Terms—Manifold learning, Super-resolution, Face hal-
lucination, RBF-PLS, Neighbor Embedding 
 

1. INTRODUCTION 
 
Nowadays, surveillance cameras have been widely used in security 
and protection systems. They can provide very important clues 
about objects for solving a case, such as criminals. However, the 
object is so far away from the camera that the resolution of the 
interested face in the picture is too low to provide helpful informa-
tion. Additionally, in many real surveillance scenarios, the quali-
ties of the surveillance images are very poor because of the influ-
ences of many factors, such as underexposure, optical blurring, 
defocusing and so on. Due to the low resolution and noise distur-
bance, the face images of interest lose too many detailed facial 
features to be identified by human. Therefore, in order to obtain 
enough facial feature details for recognition, it is necessary to infer 
a high-quality and HR face image from a low-quality and LR one 
and this technique is called face super-resolution (SR) or face hal-
lucination [1-11].  

Up to now, many face SR methods have been proposed. And 
they can be divided into two categories: reconstruction-based 
methods and learning-based methods. Between them, learning-
based methods have received more attention because they can 
achieve higher magnification factor and produce better super-
resolved results. In this paper, we only focus on the learning-based 
method whose input is a single frontal face.  

The common idea of learning-based methods is to infer HR 
face by training the relationship between LR and HR image pairs. 
For example, Baker and Kanade [1] propose a learning-based SR 
method named “face hallucination”, and it is the first SR method 
targeted at face images specially. Liu et al. [2] propose to integrate 
a global parametric model and a local nonparametric model for 
face super-resolution. Following the work of [1-2], learning-based 
methods draw enormous attention in the SR research community.  

In general, face images are a class of highly structured objects 
and have similar appearances. Machine learning theory suggests 
that face images reside on a non-linear low-dimensional manifold 
and span a small subset in the high-dimensional image space [13]. 
Inspired by the manifold learning results, a series of SR algorithms 
with a manifold assumption have been proposed. The manifold 
assumption states that the LR and HR image manifolds share simi-
lar local geometry. Chang et al. [6] first use Neighbor Embedding 
algorithm for SR of general images. Then, such manifold tech-
niques have been used for global face reconstruction [4-5], local 
detail enhancement [7] or both [8]. However, the projection of LR 
to HR image is “one-to-multiple” mapping, so the manifold as-
sumption will not hold well. Li et al. [9] design two projection 
matrixes to project original coupled manifolds (LR and HR image 
manifold) to a common manifold for face super-resolution. Huang 
et al. [10] propose a manifold learning based two-step method. 
They apply canonical correlation analysis (CCA) [17] to maximize 
the correlation between the local neighbor relationships of LR and 
HR images both in global face reconstruction and residual face 
compensation. However these methods do not consider other de-
grading cause, such as blurring and noise, they simply use down-
sampled images as input. From the core idea of manifold learning 
based approaches, we learn that they tend to explore the global 
features from local geometry structure of the training data. There-
fore, when the training sets are contaminated by noise, even small 
noise, the consistency of local geometric structure of LR and HR 
image manifolds will be affected badly [13], which will result in 
the invalidation of manifold learning based face super-resolution 
methods. 

In order to reveal the underlying relationship between noisy 
LR images and HR images, we have analyzed noisy LR images to 
find out that there are three kinds of information in the noisy LR 
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images: useful information to expression of HR images, redundant 
information and noise. What we want is to extract the useful in-
formation for modeling the relationship and eliminate the redun-
dant information as well as noise.  

Combining advantages of linear nature in parameters of RBF 
and the ability of PLS to maximize the squared covariance between 
training sets, we recover the non-linear relationship between LR 
and HR training pairs using RBF-PLS regression [14] in this paper. 
Motivated by the two-step framework, we firstly introduce RBF-
PLS regression to learn the relationship between LR and HR train-
ing pairs, and the inference (global face) can be done by substitut-
ing a LR observation into the established model. In the second step, 
we learn the similar local geometry between the original HR face 
manifold and the obtained global face manifold, whose local ge-
ometry is more consistent with that of original HR face manifold 
than noisy LR one is, thereby leading to better results. We conduct 
experiments on the CAS-PEAL-R1 database [15] to verify the 
effectiveness of our method under simulation and real conditions. 

 

2. RADIAL BASIS FUNCTION-PARTIAL LEAST 
SQUARES (RBF-PLS) REGRESSION 

 
RBF-PLS is a regression technique, and it can be used to establish 
the non-linear relationship between two training sets [14]. Com-
pared with PCA method used by Liu [2] and Wang [4], RBF-PLS 
regression not only effectively generalizes the information of inde-
pendent variables system (LR faces), but also correctly explains 
the dependent variables system (HR faces) while excludes the im-
pact of noise in the training sets by maximizing the covariance 
between elements in independent variables system and dependent 
variables system. In this section, we briefly introduce the RBF-
PLS technique. 

Define 1, , mx x… as a set of n -dimension independent 
variables, then the data matrix is 1[ , , ]mX x x … , m nX  ; and 

1, , my y…  as a set of l -dimension dependent variable, and the data 
matrix is 1[ , , ]mY y y … , m lY  . RBF-PLS aims at establishing 
the non-liner relationship between the observation X and the target 
Y. Specially, it carry out the non-linear transformation of the ob-
servation X, forming an activation matrix A , and then the PLS is 
applied to the activation matrix A and the target Y.  

2.1 RBF Network 
In RBF network, Gaussian function is the most commonly used 
radial basis function to carry out the non-linear transformation of 
X and form the activation matrix A : 
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The elements of matrix A  are defined as follows: 
2 2exp( || || / )ij i j ja x c    , , 1, ,i j m … ,                     (2) 

where ix  is the i -th column of the observation X , || ||  is a dis-
tance measurement (e.g., the Euclidean Distance), jc  denotes the 
center of the j -th radial basis function and j  is the correspond-
ing width. We limit our considerations to the width j  with a 

constant width 32  , and the center of the j th RBF equals to 
the j th observation of X , 

j jc x , 1, ,j m …    (3) 

2.2 PLS Method for the RBF Network 
After the activation matrix A  is calculated, the PLS method can be 
applied to model the relationship between activation matrix A  and 
the target Y . For the centered A  and Y , we can set up the follow-
ing linear PLS model: 

Y TC F AWC F    ,                           (4) 
where T represents the low-dimensional score matrix of A  with 
the dimension of ( )m m m m   , and the scores of A  are the 
linear combinations of the RBF maximizing the covariance be-
tween A  and Y . C is the regression coefficient matrix, W is the 
transformation matrix between A  and T , F  is the error matrix. 
Here, the value of m  is a key factor for making a balance be-
tween reducing the affection of noise and improving the precise-
ness of the model. For more details of the PLS modeling, we refer 
the reader to [18]. 

The non-linear relationship between X  and Y  is turned into 
the linear algebra problem after applying PLS regression to con-
struct the RBF network, and the resulting RBF-PLS regression can 
be used to calculate the generalization. Given the practical obser-
vation tX , the RBF-PLS regression can be used to predict the re-
sponse tY . The centered tX  is used to calculate the activation ma-
trix tA . Then, the response tY  is 

t tY AWC                                   (5) 
 

3. A TWO-STEP FACE SUPER-RESOLUTION 
METHOD 

 
3.1 Global Face Reconstruction 
In this subsection, we apply the RBF-PLS to model the non-linear 
relationship between the LR and HR images.  Given a LR input 
face, we use the model to predict the global face. Let 

1 1{ } [ , , ]L L m L L l m
i i mI I I I 

    and 1 1{ } [ , , ]H H m H H n m
i i mI I I I 

    
represent the LR and HR training face images, respectively, where 
m  is the number of training images. Every column of LI and HI is 
the observation after reshaping all the pixels of LR and HR face 
image. l  and n  are the dimension of  LR and HR face image,  
where 2l s n  , and s  is the down-sampling factor. Based on 
RBF-PLS technique presented in Section 2, we establish the non-
linear regression relationship between LR and HR images by re-
placing X and Y with LI and HI , respectively. When inputting a 
LR observation L

tI , the global face G
tI  can be reconstructed by the 

established regression model. The main steps of the reconstruction 
of global face are as follows: 

a) Construct the activation matrix A , whose elements are defined 
as follows:  

2 2exp( || || / )L L
ij i ja I I    , , 1, ,i j m …            (6) 

b) Mode matrix A  and matrix HI  using PLS, A  and HI  pro-
ject to the low-dimension matrix T  whose dimension is 
m m ( )m m  , respectively: 

HI TC F AWC F                             (7) 
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c) Predict the HR global image from the LR observation tI : After 
constructing the activation matrix tA , where 

2 2exp( || || / )L L
t t jA I I    , 1, ,i j m … , we can predict the 

global face: 
                              G

t tI A WC                                     (8) 
If we select a proper value of m , the reconstructed global face 
will maintain primitive facial features and be immune to noise.   

3.2   Position Patch Based Face Super-resolution via 
Neighbor Embedding 
In the training phase, we gain the global faces 1{ }G G m

i iI I   for LR 
training set based on the method presented above. Each image in 
the training sets, GI and HI , is divided into a set of p small over-
lapping patch sets , ,{ | ,1 ,1 }G G G

i j i j iI I I i m j p     and 

, ,{ | ,1 ,1 }H H H
i j i j iI I I i m j p      using the same division configuration. 

The global face image patches manifold, which is formed by 
the image patches of all global faces at the same position, is more 
consistent with that of original HR patches manifold than noisy LR 
one is. We introduce the neighborhood preservation rate1 [12] to 
measure the consistency between coupled manifolds. In Fig. 1, we 
can see that neighborhood preservation rate is increased after 
global face reconstruction. 

 

 
Fig.1 neighborhood preservation rates between couple manifolds 
of LR patches and HR patches, and global patches and HR patches. 

 
In the testing phase, for a novel LR face input L

tI , we first re-
construct the global face G

tI using the algorithm proposed in Sec-
tion 3.1. And then, divide it into overlapping patches, 

, ,{ | ,1 }G G G
t j t j tI I I j p   . For each patch ,

G
t jI , we apply Neighbor 

Embedding to determine the HR patch ,
H
t jI   using the LR and HR 

training pairs of position patches [11] as ,
G
t jI . For more detail of 

this Neighbor Embedding method, please refer to [6]. 
 

4. EXPERIMENTS AND RESULTS 

4.1  Database 
Our experiments are conducted on 640 images with neutral expres-
sion and frontal pose of the CAS-PEAL-R1 database [15]. We ran-
domly select 600 images for training and leave the other 40 for 
                                                                    
1 The higher neighborhood preservation rate value is, the more consistent 

between coupled manifolds are.  

testing. The images are aligned by five manually selected feature 
points and cropped to 112×96 pixels. All images are smoothed (an 
averaging filter H of size 4×4) and down-sampled by a factor of 4 
to LR 28×24 pixels images with the Poisson noise added (which 
well models real noise). 
 

 
Fig.2. Simulation results of different methods. (a) Input LR faces. 
(b) Wang’s Results. (c) Huang’s global faces. (d) Huang’s results 
after residual compensation. (e) Global faces based on RBF-PLS. 
(f) Our final results. (g) Original HR faces. (Note that the effect is 
more pronounced if you resize the figure yourself on the electronic 
version, and so does Fig.3.) 

4.2   Simulation Results 
In this experiment, we first construct the global images using the 
RBF-PLS method. The parameters of the regression model are set 
as: 32  , 50m  . Next, we perform Neighbor Embedding al-
gorithm to inform the target HR images. The number of the nearest 
neighbors K is set to 50. The patch size is 8×8 with an overlap of 
6 pixels between adjacent patches. Note that all parameters are set 
empirically. Due to space limitations, we only exhibit the results of 
eight test images in Fig.2. Our global faces remove most of the 
noise of the input faces, while maintaining the primitive facial 
feature information as illustrated in Fig.2 (e). The final results (Fig. 
3(f)) have much clearer detail features and fewer artifacts at edges, 
and they are good approximations to the original HR images. We 
also compare our method with Wang’s eigentransformation 
method [4] and Huang’s manifold learning based two-step method 
[10]. In order to obtain the best performance, we adjust parameters 
to the optimal for each comparative method. Fig.2 (b) is the results 
of Wang’s method. Fig.2 (c) and Fig.2 (d) are Huang’s global and 
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residual faces, respectively. It is observed that ghost effect exists in 
the hallucinated faces reconstructed by Wang’s method. Mean-
while, they are similar to the mean face for the PCA bases are ho-
listic. Compared with Huang’s method, our method can generate 
better performance both in global faces and final results, especially 
in face contour and eyes. Simulation experiments demonstrate that 
our approach is able to generate HR face images with visually 
satisfactory global face appearance and local detailed features. 
Comparative experiments show the superiority of our method over 
Wang and Huang’s approaches. 
 

Table1. RMSE, PSNR (dB) and SSIM comparisons 

 
 

We calculate the root mean square error (RMSE), peak signal-
to-noise ratio (PSNR) and SSIM index [16] for the 40 test images 
for each method, and give the results in Table. 1. Again, we can 
see that our method consistently outperforms all the other methods. 
Note that because Huang’s method fails to explore the manifold 
structure when affected by noise, and in some cases performs even 
worse than its first global face reconstruction results. 

4.3   Results of Real Condition 
In order to further testify the effectiveness of our method, we per-
form experiments according to real surveillance camera condition. 
Fig.3 (a) is a picture with a CIF-size (352×288) taken by a sur-
veillance camera in the condition of underexposure.  We extract 
the interested face and crop it to 56×48 pixels, as can be seen in 
Fig.3 (b).  Fig.3 (c) is the input LR face by converting Fig.3 (b) to 
grayscale and adjusting its levels. We set the values of all the pa-
rameters equal to those mentioned in Section 4.1 except for down-
sampling factor, which is set to 2. Fig.3 (d)-(i) are the subjective 
results comparison of different methods. Actual results show that 
our method is effective. 
 

5. CONCLUSION 
 
In real video surveillance scenarios, the quality of the surveillance 
images is affected by many factors, and the interested objects (such 
as faces) are low-quality and LR. In this paper, we propose a new 
two-step method to hallucinate a high-quality and HR face from a 
single low-quality and LR frontal face image. First, a non-linear 
regression method based on RBF-PLS technique is proposed to 
render a global HR face, which is robust to noise.  Then we con-
struct the target HR face through position patch based Neighbor 
Embedding. Experimental results show that the proposed method 
is effective not only in simulation condition but also in the real 
surveillance cameras conditions. 
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Fig.3. Results of real condition. (a) A picture from surveillance 
camera. (b) The interested face. (c) Input LR image. (d) Bicubic 
interpolation result of (c). (e) Wang’s Result. (f) Huang’s global 
face. (g) Huang’s result after residual compensation. (h) Global 
face based on RBF-PLS. (i) Our final result. 
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