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ABSTRACT

This paper describes a Gaussian process based method for nonlin-
ear hyperspectral image unmixing. The proposed model assumes
a nonlinear mapping from the abundance vectors to the pixel re-
flectances contaminated by an additive white Gaussian noise. The
parameters involved in this model satisfy physical constraints that
are naturally expressed within a Bayesian framework. The proposed
abundance estimation procedure is applied simultaneously to all pix-
els of the image by maximizing an appropriate posterior distribution
which does not depend on the endmembers. After determining the
abundances of all image pixels, the endmembers contained in the im-
age are estimated by using Gaussian process regression. The perfor-
mance of the resulting unsupervised unmixing strategy is evaluated
through simulations conducted on synthetic data.

Index Terms— Nonlinear unmixing, hyperspectral images,
Gaussian Processes.

1. INTRODUCTION

Spectral unmixing (SU) is a major issue that arises when analyzing
hyperspectral images. SU consists of identifying the macroscopic
materials present in an hyperspectral image and the proportions of
these materials for all image pixels. Most SU strategies assume that
pixel reflectances are linear combinations of pure component spec-
tra [1]. The resulting linear mixing model (LMM) has been widely
adopted in the literature and has provided interesting results. How-
ever, as discussed in [1], the LMM can be inappropriate for some
hyperspectral images, such as those containing sand, trees or vege-
tation areas. Nonlinear mixing models provide an interesting alter-
native for overcoming the inherent limitations of the LMM. Various
nonlinear mixing models have been recently studied in the litera-
ture. More specifically, the bidirectional reflectance-based model
proposed in [2] has been introduced for hyperspectral images de-
fined by intimate mixtures. Bilinear models recently studied in [3,4]
have shown interesting properties for images subjected to scatter-
ing effects, i.e., observed in wooded areas. Other more flexible un-
mixing techniques have also been proposed to handle wider class
of nonlinearities, including radial basis function networks [5, 6] and
kernel-based models [7]. This paper considers a kernel-based ap-
proach for unsupervised SU based on a nonlinear dimension reduc-
tion method referred to as Gaussian process latent variable model
(GP-LVM). The main advantage of the GP-LVM is its capacity to
accurately model any nonlinearity. Note that “unsupervised” means
that the endmembers contained in the image are not known a priori.
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As a consequence, the model parameters to be estimated are the end-
members and the abundances of all pixels of the image. In the last
decades, many endmember extraction algorithms (EEAs) have been
developed to identify the pure spectral components contained in a
hyperspectral image. However, most of these algorithms are based
on the LMM and can be inefficient in handling nonlinear mixtures
of endmembers. Conversely, the algorithm studied in this paper esti-
mates the image endmembers using the regression capacity of Gaus-
sian processes (GPs) in addition to the image pixel abundances.

The paper is organized as follows. Section 2 introduces the
GP-LVM for dimensionality reduction. Section 3 introduces a con-
strained latent model for abundance estimation in hyperspectral im-
agery. Section 4 studies a new endmember estimation procedure us-
ing Gaussian process regression. Some simulation results conducted
on synthetic data are shown and discussed in Section 5. Conclusions
are reported in Section 6.

2. GAUSSIAN PROCESS LATENT VARIABLE MODEL

The GP-LVM is a powerful approach for probabilistic nonlinear di-
mensionality reduction [8] which generalizes probabilistic PCA by
introducing nonlinearities through kernel functions. The linear GP-
LVM assumes the following linear mapping

y(n) = Wx(n) + e(n), n = 1, ..., N

between the N observation vectors y(1), . . . ,y(N) of size L×1 and
N so-called latent variables x(1), . . . ,x(N) of size d × 1, where
d is the dimension of the latent space and W = [w1, . . . ,wL]

T

is an L × d mixing matrix. We assume that the observations
y(n) have been centered and whitened (i.e., E[y(n)] = 0 and
E[y2(n)] = 1) and that e(n) is a Gaussian noise vector such that
e(n) ∼ N (

0L, σ
2IL

)
for n = 1, . . . , N . Assuming independence

between the noise vectors, the distribution of the N ×L observation
matrix Y = [y(1), . . . ,y(N)]T conditioned on W ,X, σ2 is

Y|W ,X, σ2 ∼
N∏

n=1

N (
Wx(n), σ2IL

)
(1)

where X = [x(1), . . . ,x(N)]T is an N × d latent variable ma-
trix. Assigning independent Gaussian N (

0d, σ
2Id

)
prior dis-

tributions to x(1), . . . ,x(N), marginalizing the joint distribution
f(Y,X|W , σ2) over X lead to the probabilistic PCA [9]. The idea
of GP-LVMs is different and consists of assigning a prior to W and
integrating out W from the posterior distribution of interest. More
precisely, consider independent Gaussian priors for w1, ...,w�, the
joint prior of W is

f(W ) =

(
1

2π

) dL
2

L∏
�=1

exp

[
−1

2
‖w�‖2

]
. (2)
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Straightforward computations lead to the following result

f(Y|X, σ2) =

∫
f(Y|W ,X, σ2)f(W )dW

∝ |C|−L
2 exp

[
−1

2
tr(C−1YYT )

]
(3)

where ∝ means “proportional to” and C = XXT + σ2IN . The
main advantage of this so-called dual representation of probabilistic
PCA is that it can be easily generalized to nonlinear mapping with
respect to (w.r.t.) X . More precisely, the sample covariance matrix
of the latent variables XXT can be replaced by an N × N matrix
K = [ki,j ] such that ki,j = k(x(i),x(j)) for i, j = 1, . . . , N ,
where k(·, ·) is a kernel function. In this paper, we propose to use
the Gaussian kernel defined by

ki,j = α exp

(
−1

2
‖x(i)− x(j)‖2

)
(4)

where the kernel bandwidth has been set to 1 without loss of gener-
ality and where α is the variance of the the nonlinearly transformed
variables. Note that in contrast to kernel-PCA which applies the
kernel function to the data space, the GP-LVM assumes a nonlinear
transformation of the latent space into a higher dimensional space.
When using kernels, the following results can be obtained

f(Y|X, α, σ2) ∝ |Σ|−L
2 exp

[
−1

2
tr(Σ−1YYT )

]
∝

L∏
�=1

|Σ|− 1
2 exp

[
−1

2
yT
� Σ

−1y�

]
(5)

where Σ = K+σ2IN , y� contains all observations associated with
the �th spectral band and Y = [y1, . . . ,yL]. It has been shown
that the GP-LVM summarized in this section allows the data set to
be represented using latent variables belonging to a subspace whose
dimension can be lower than the dimension of a PCA for a given
precision of representation [8]. The next section introduces a new
abundance estimation method based on the latent variables of the
GP-LVM used for nonlinear dimensionality reduction.

3. ABUNDANCE ESTIMATION USING THE GP-LVM

A fundamental assumption in hyperspectral imagery is that each ob-
servation vector y(n) results from a mixture of R pure spectral com-
ponents (endmembers) m1, . . . ,mR of size L×1 whose abundance
vector a(n) = [a1(n), . . . , aR(n)]

T satisfies the following positiv-
ity and sum-to-one constraints

ar(n) ≥ 0, ∀r = 1, . . . , R, and

R∑
r=1

ar(n) = 1. (6)

Because of these constraints, the data y(1), . . . ,y(N) live in an
(R − 1)-dimensional manifold. Thus it seems reasonable to assume
that the simplest latent variables x1, . . . ,xN that can represent the
data y(1), . . . ,y(N) also belong to a simplex of dimension R − 1,
i.e., d = R − 1. However, these latent variables are not exactly the
abundances since they do not necessarily satisfy positivity and sum-
to-one constraints1. Thus, we propose to express the latent variables
as a linear transformation of the abundances as follows

x(n) = V a(n) (7)

1Note that in the linear case, the latent variables provided by PCA also
belong to a simplex of dimension R− 1 and differ from the abundances.

where V is an (R − 1) × R matrix and a(n) is the nth abundance
vector satisfying the constraints (6). Replacing (7) in (4), we obtain

ki,j = α exp

(
−1

2
‖V (a(i)− a(j))‖2

)
. (8)

Using the results of Section 2, the distribution of Y|A,V , α, σ2

can be expressed as in (5) with Σ = K + σ2IN and the elements
of K are defined in (8). We denote as A = [a(1), . . . , a(N)]T the
N × R abundance matrix and as θ = {A,V , α, σ2} the unknown
parameters associated with the GP-LVM for abundance estimation.
It has been shown in [10] that GP-LVMs preserve dissimilarities. In
the SU context, it means that pixels that are spectrally different have
different abundance vectors. However, preserving local distances is
also interesting: spectrally close pixels are expected to have similar
abundance vectors. Several approaches have been considered to pre-
serve local distances using GP-LVMs. In this paper, we propose as
in [11] to include the locally linear embedding (LLE) in the proposed
GP-LVM. First, the K nearest neighbors {y(j)}j∈νi of each obser-
vation vector y(i) are computed using the Euclidian distance (νi is
the set of integers j such that y(j) is a neighbor of y(i)). The weight
matrix Λ = [λi,j ] of size N ×N leading to the best reconstruction
of y(i) from its neighbors is then estimated as

Λ̂ = argmin
Λ

N∑
i=1

∥∥∥∥∥y(i)− ∑
j∈νi

λi,jy(j)

∥∥∥∥∥
2

. (9)

Note that the solution of (9) is easy to obtain in closed form since
the criterion to optimize is a quadratic function of Λ. Note also that
the matrix Λ is sparse since each pixel is only described by its K
nearest neighbors. The locally linear patches obtained by the LLE
can then be used to set the following prior for the abundance matrix

f(A|Λ̂) ∝ exp

[
− 1

2s2

N∑
i=1

∥∥∥∥∥a(i)−
∑
j∈νi

λ̂i,ja(j)

∥∥∥∥∥
2] N∏

i=1

1S(a(i))

where s2 is an hyperparameter to be adjusted and 1S(·) is the indi-
cator function over the simplex S defined by the constraints (6). The
following non-informative priors are also assigned to V , α and σ2

f(V i,j) ∝ 1(−δV ,δV )(V i,j)
f(α) ∝ 1(0,δα)(α)
f(σ2) ∝ 1(0,δ

σ2 )(σ
2)

where the intervals (−δV , δV ), (0, δα) and (0, δσ2) cover the possi-
ble values of the parameters V i,j , α and σ2 Assuming a priori inde-
pendence between A, V , α and σ2, the joint posterior distribution
of θ can be expressed as

f
(
θ
∣∣Y, Λ̂

)
∝ f(Y|θ)f(θ|Λ̂) (10)

where f(θ|Λ̂) = f(A|Λ̂)f(V )f(α)f(σ2). Mainly due to the
nonlinearity introduced through the kernel, a closed form expres-
sion for the Bayesian estimators of θ (minimum mean square er-
ror (MMSE) or maximum a posteriori (MAP) estimators) is diffi-
cult to obtain. Consequently, we propose to use a gradient-based
method for maximizing the posterior (10) w.r.t. θ and computing
the MAP estimator2 of θ. To handle the constraints for A, we pro-

2Note that for a given X , there is an intrinsic ambiguity in (8) (and pos-
sibly in the posterior (10)) between the scales of the matrices A and V .
However, this ambiguity can be removed by assuming that the actual abun-
dances occupy the largest volume in S. Thus, after estimating the unknown
parameters θ by maximization of (10), the estimated abundance matrix is
mapped via a linear transformation into a simplex with maximum volume
whose vertices have abundance vectors [0T

r−1, 1,0
T
R−r]

T for r = 1, ..., R.
The simplex with maximum volume containing the abundances is determined
using minimum volume simplex analysis (MVSA) [12].
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pose to use a subgradient-based algorithm updating sequentially the
abundance vector a(n), the matrix V , the scale parameter α and
the noise variance σ2. The partial derivatives of the posterior (10)
w.r.t. a(n), n = 1, . . . , N , V and σ2 can be derived from the par-
tial derivatives given in [10] and the usual chain rules. To satisfy the
positivity and sum-to-one constraints, the partial derivatives w.r.t.
a(n) are projected onto the simplex defined by (6). Moreover, we
have considered a bounded line search step size to ensure the abun-
dance vector satisfies the positivity constraints. Note that the abun-
dance estimation procedure studied in this section does not require
the knowledge of the image endmembers. The next section shows
that these endmembers can be estimated using GP regression.

4. ENDMEMBER ESTIMATION USING GAUSSIAN
PROCESS REGRESSION

This section studies a new endmember estimation strategy based on
GP regression. This strategy assumes that all the image abundances
have been estimated (e.g., by using the algorithm described in Sec-
tion 3). Eq. (5) shows that f(Y|X, α, σ2) is the product of L inde-
pendent GPs associated with each spectral band of the data space

y� ∼ N (
0N ,K + σ2IN

)
. (11)

Looking carefully at the covariance matrix of y�, one can write

y� = z� + e� (12)

where e� is the N × 1 white Gaussian noise vector associated with
the �th spectral band (having covariance matrix σ2IN ) and

z� ∼ N (0,K) (13)

with K the N × N covariance matrix of z� which is constructed
from θ and (8). Thus the observed vector y� is related to a hidden
vector z� associated with the �th components of all the training data
such that

y�|z� ∼ N (
z�, σ

2IN
)
. (14)

Consider an L× 1 test data with hidden vector t = [t(1), ..., t(L)]T

and associated abundance vector3 u = [u(1), ..., u(R)]T . We as-
sume that the test data share the same statistical properties as the
training data y1, ...,yL in the sense that [zT

� , t(l)] is a Gaussian vec-
tor such that[

z�

t(�)

]
∼ N

([
0N

0

]
,

[
K κ(u)

κ(u)T α

])
(15)

where α is the variance of t(�) (note that according to (8), the vari-
ance of any element of z� also equals α) and κ(u) contains the
covariances between the training inputs and the test inputs, i.e.,

κi(u) = α exp

(
−1

2
‖V (a(i)− u)‖2

)
, i = 1, . . . , N. (16)

Note that the abundances u have to be known to compute κ(u).
Combining (15) with (14) leads to

t(�)|y� ∼ N (
μ�, s

2
l

)
(17)

with

μ� = κ(u)T (K + σ2IN )−1y�

s2l = α− κ(u)T (K + σ2IN )−1κ(u).

3u will be set to [0T
r−1, 1,0

T
R−r]

T for the estimation of the rth end-
member.

Since the posterior distribution (17) is Gaussian, the MAP and
MMSE estimators of t equal the posterior mean μ = (μ1, ..., μL)

T .

In order to estimate the endmembers, we propose to compute
the estimated hidden vectors associated with the abundance vectors
[0T

r−1, 1,0
T
R−r]

T for r = 1, ..., R. For each value of r, the rth
estimated hidden vector will be the rth estimated endmember. In-
deed, for the LMM and the nonlinear models considered in this pa-
per, the endmembers are obtained by setting u = [0T

r−1, 1,0
T
R−r]

T

in the model relating the observations to the abundances. Note that
the proposed endmember estimation procedure provides the poste-
rior distribution of each endmember via (17) which can be used to
derive confidence intervals for the estimates.

5. SIMULATIONS

We first evaluate the performance of GPs for abundance estimation
by unmixing 3 synthetic images of 200 pixels. The R = 3 end-
members contained in these images have been extracted from the
spectral libraries provided with the ENVI software (i.e., green grass,
olive green paint and galvanized steel metal). The first image I1 has
been generated according to the LMM. The second image I2 has
been generated according to the bilinear mixing model introduced in
[3], referred to as “Fan model” (FM). The third image I3 has been
constructed by using the generalized bilinear model (GBM) intro-
duced in [4]. The abundance vectors a(n), n = 1, . . . , 200 have
been randomly generated according to a uniform distribution con-
centrated on the admissible set defined by the positivity and sum-
to-one constraints. The nonlinearity parameters of the GBM have
been randomly generated according to a uniform distribution on the
interval (0, 1)R. The noise variance and the variance involved in the

abundance prior f(A|Λ̂) have been fixed to σ2 = s2 = 10−4. The
number of nearest neighbors required to define the neighborhoods

νi in f(A|Λ̂) has been fixed to K = 3. Finally, the hyperparam-
eters in (10) have been fixed to δV = δα = δσ2 = 104 in order
to cover all possible values of V i,j , α and σ2. The gradient algo-
rithm used to maximize the posterior distribution (10) requires end-
members and abundances to be initialized. The initial endmembers
have been computed using the vertex component analysis (VCA) al-
gorithm [13] which provides good results even in the case of non-
linear mixtures. The initial abundance matrix has then been com-
puted using the fully constrained least-squares (FCLS) algorithm.
The number of iterations for the optimization algorithm has been set
to Niter = 200 (which has ensured algorithm convergence in all ex-
periments). After the optimization step, the abundances have been
rescaled using the MVSA method as discussed in Section 3.

The performance of GPs for abundance estimation has been
first observed by comparing the reconstructed pixels (computed
from the estimated abundance vectors) with the observed spec-
tra. More precisely, the quality of reconstruction has been eval-
uated from the average reconstruction error (ARE) defined as

ARE =
√∑N

n=1 ‖ŷ(n)− y(n)‖2 /LN where y(n) is the nth

observed pixel and ŷ(n) the reconstructed pixel obtained using GP
regression by setting u = â(n) in (17). Table 1 compares the AREs
obtained using the proposed algorithm (referred to as GP-LVM)
and the VCA algorithm for the three images I1, I2 and I3. These
results show that the GP-LVM is flexible enough to approximate
the different mixing models since it provides either the first (bold
underlined) or second (bold) best results in term of ARE. The qual-
ity of the unmixing procedures can also be measured by comparing
the estimated and actual abundances using the root mean square

error (RMSE) defined by RMSE =
√∑N

n=1 ‖â(n)− a(n)‖2/NR
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where a(n) is the nth actual abundance vector and â(n) its estimate.
Table 2 compares the RMSEs obtained with the proposed algo-
rithm (GP-LVM) and other existing algorithms (referred to as FCLS
[14], Fan [3] and Halimi [4]). Note that the GP-LVM algorithm
does not require to estimate the endmembers. The other algorithms
(FCLS, FAN, GBM) have been run with endmembers esimated with
the VCA algorithm. Table 2 shows that the proposed algorithm is
general enough to accurately approximate the considered mixing
models since it provides either the first or second best results for
abundance estimation.

The last experiments evaluate the performance of GPs for
endmember estimation. The quality of endmember estimation
has been evaluated by the mean square error (MSE) defined as

MSE =
√

‖m̂r −mr‖2 /L where mr is the rth actual endmember

and m̂r its estimate. Table 3 compares the REs obtained for each
endmember using the GP-LVM and the VCA algorithms for the
three images I1 to I3. These results show that the GP-LVM provides
accurate endmember estimates for both linear and nonlinear mix-
tures. Fig. 1 shows the MMSE estimates of the three endmembers
obtained using VCA and the proposed GP-LVM algorithm. These
results are very promising.

Table 1. AREs (×10−2).
FCLS [14] Fan [3] Halimi [4] GP-LVM

I1 (LMM) 0.99 3.06 1.05 1.00
I2 (FM) 2.36 1.83 1.05 0.98
I3 (GBM) 1.38 2.31 1.05 0.98

Table 2. RMSEs (×10−2).
FCLS [14] Fan [3] Halimi [4] GP-LVM

I1 (LMM) 1.93 4.22 2.04 0.67
I2 (FM) 4.22 1.63 2.77 1.95
I3 (GBM) 2.80 2.72 1.73 1.35

Table 3. MSEs (×10−2).
VCA [14] MVSA [12] GP-LVM

I1 (LMM)

m1 0.29 0.21 0.29
m2 1.65 0.40 1.65
m3 0.48 0.25 0.41

I2 (FM)

m1 1.25 2.79 1.09
m2 2.96 3.19 2.85
m3 0.60 3.76 0.92

I3 (GBM)

m1 1.61 0.97 0.72
m2 0.98 1.02 0.66
m3 0.56 2.13 0.61

6. CONCLUSIONS

This paper has proposed a new unsupervised algorithm based on
Gaussian processes for nonlinear spectral unmixing. The main idea
of the proposed strategy was to express the hyperspectral image pix-
els as functions of latent variables whose covariances depend on
abundances via appropriate kernels. Positivity and sum-to-one con-
straints for the abundance vectors were included in the estimation
procedure. A new endmember estimator based on Gaussian process
regression was finally introduced. Simulations conducted on syn-
thetic images provided very promising results. Future works include
the design of appropriate kernels for nonlinear spectral unmixing.
Considering other forms of spatial correlation between adjacent pix-
els of the image is also an interesting field of research.

Fig. 1. Estimated endmembers using VCA (green) and GP-LVM
(blue) compared with the actual endmembers (red) for the image I2.
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