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ABSTRACT

Hyperspectral unmixing is a process of decomposing the hyperspec-
tral data cube into endmember signatures and their corresponding
abundance maps. For the unmixing results to be completely inter-
pretable, the number of materials (or endmembers) present in that
area should be known a priori, which however is unknown in prac-
tice. In this work, we use hyperspectral data geometry and succes-
sive endmember estimation strategy of an endmember extraction al-
gorithm (EEA) to develop two novel algorithms for estimating the
number of endmembers, namely geometry based estimation of num-
ber of endmembers - convex hull (GENE-CH) algorithm and affine
hull (GENE-AH) algorithm. The proposed GENE algorithms esti-
mate the number of endmembers by using Neyman-Pearson hypoth-
esis testing over the endmembers sequentially estimated by an EEA
until the estimate of the number of endmembers is obtained. Monte-
Carlo simulations demonstrate the efficacy of the proposed GENE
algorithms, compared to some existing benchmark methods for esti-
mating number of endmembers.

Index Terms— Hyperspectral unmixing, Successive endmem-
ber extraction, Estimation of number of endmembers, Neyman-
Pearson hypothesis testing

1. INTRODUCTION

Hyperspectral unmixing (HU) is a process of decomposing the hy-
perspectral observations over multiple bands into a collection of
endmember signatures and their corresponding proportions or abun-
dances, under the assumption that the number of substances (or end-
members) present in that geographical area of interest is given a pri-
ori. Existing methods for estimating the number of endmembers can
be broadly classified into two categories: information theoretic cri-
teria based methods and eigenvalue thresholding methods. The in-
formation theoretic criteria based algorithms include Akaike’s infor-
mation criterion (AIC) [1], minimum description length (MDL) [2],
and Bayesian information criterion (BIC) [3], to name a few. The
estimation results of these algorithms may suffer from model mis-
match errors resulting from incorrect prior information [4]. The
eigenvalue thresholding based algorithms include Neyman-Pearson
detection theory based method [5] (also referred to as virtual dimen-
sionality (VD) in [4]), and hyperspectral signal subspace identifica-
tion by minimum error (HySiMe) [6], to name a few.

In this work, we propose two hyperspectral data geometry based
algorithms for estimating the number of endmembers, namely ge-
ometry based estimation of number of endmembers - convex hull
(GENE-CH) algorithm and affine hull (GENE-AH) algorithm. The
proposed algorithms exploit successive estimation property of a
pure-pixel based EEA, and aim to decide when the EEA should stop
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estimating the next endmember. The GENE-CH and GENE-AH al-
gorithms are devised based on the data geometry fact that all the
observed pixel vectors should lie in the convex hull (CH) and affine
hull (AH) of the endmember signatures, respectively. In the noisy
scenario, the decision of whether the current endmember estimate
is in the CH/AH of the previously found endmembers can be for-
mulated as a binary hypothesis testing problem, which can be dealt
using Neyman-Pearson detection theory. The performances of the
proposed GENE algorithms are demonstrated through Monte-Carlo
simulations for various scenarios.

The notations used throughout this paper are standard. RM and
R

M×N represent a set of real M × 1 vectors and M × N matri-
ces, respectively, 1N represents an N × 1 all-one vector and 0 is
an all-zero vector of proper dimension. The symbol � denotes the
componentwise inequality, ‖ ·‖2 represents the Euclidean norm, and
N (μ,Σ) denotes Gaussian distribution with mean vector μ and co-
variance matrix Σ.

2. PROBLEM STATEMENT AND ASSUMPTIONS

Owing to low spatial resolution, each observed pixel vector repre-
sents a mixture of multiple distinct substances and each pixel vector
of the hyperspectral images measured over M spectral bands can
then be represented by the following M ×N linear mixing model:

y[n] = x[n] +w[n], (1)

x[n] = As[n] =

N∑
i=1

si[n]ai, ∀n = 1, . . . , L. (2)

In (1), y[n] = [ y1[n], . . . , yM [n] ]T denotes the nth observed pixel
vector comprising M spectral bands, x[n] = [ x1[n], . . . , xM [n] ]T

is its noise-free counterpart, and w[n] = [ w1[n], . . . , wM [n] ]T is
the noise vector. In (2), A = [ a1, . . . ,aN ] ∈ R

M×N is the end-
member signature matrix with the ith column vector ai being the ith
endmember signature, s[n] = [ s1[n], . . . , sN [n] ]T ∈ R

N is the
nth abundance vector comprisingN fractional abundances, and L is
the total number of observed pixels. The noise vector w[n] is inde-
pendent and identically distributed (i.i.d.) zero-mean Gaussian with
covariance matrix D = E{w[n]w[n]T } = diag(σ2

1 , . . . , σ
2
M ), an

M ×M diagonal matrix with the ith diagonal entry σ2
i denoting

the noise variance in the ith spectral band.
Estimation of the number of endmembers is to estimate N from

the given hyperspectral data y[1], ...,y[L]. Generally, hyperspectral
image analysis has the following standard non-statistical assump-
tions: (A1) si[n] ≥ 0 ∀i, n, (A2)

∑N

i=1 si[n] = 1 ∀n, (A3)
min{L,M} ≥ N and A is of full column rank, (A4) (Pure pixel
assumption) there exists at least an index set {l1, . . . , lN} such that
x[li] = ai, for i = 1, . . . , N .

Two important convex geometry concepts, namely affine hull
and convex hull [7], which will play a significant role in the en-
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suing development, are briefly introduced here. The affine hull of
{a1, . . . ,aN} ⊂ R

M is defined as

aff{a1, . . . ,aN} =

{
x =

N∑
i=1

θiai

∣∣∣∣1T
Nθ = 1,θ ∈ R

N

}
, (3)

where θ = [θ1, . . . , θN ]T . Its affine dimension P is no larger than
N − 1. If {a1, . . . ,aN} is affinely independent (i.e., the vectors
a1−aN , . . . ,aN−1−aN are linearly independent), thenP = N−1.

The convex hull of {a1, . . . ,aN} ⊂ R
M is defined as

conv{a1, . . . ,aN} =

{
x =

N∑
i=1

θiai

∣∣∣∣1T
Nθ = 1, θ � 0

}
. (4)

The convex hull conv{a1, . . . , aN} is called anN − 1 dimensional
simplex in R

M if {a1, . . . ,aN} ⊂ R
M is affinely independent.

Such a simplex conv{a1, . . . ,aN} has only N extreme points (ver-
tices), exactly being a1, . . . ,aN .

3. DIMENSION REDUCTION AND DATA GEOMETRY

The proposed GENE algorithms (to be presented in Section 4) esti-
mates N using the endmember estimates provided by a successive
EEA, and hence the specified dimension reduction withN unknown
for any reliable successive EEA is presented.

Assume that we only have prior knowledge on the maximum
bound of the number of endmembers Nmax where N ≤ Nmax ≤
M . In the noisy scenario, similar to the dimension reduction pro-
cedure in [8], the dimension-reduced pixel vectors ỹ[n] can be ob-
tained by the following affine transformation of y[n]:

ỹ[n] = C
T (y[n]− d) ∈ R

Nmax−1, (5)

where

d =
1

L

L∑
n=1

y[n] =
1

L

L∑
n=1

x[n] +
1

L

L∑
n=1

w[n], (6)

C = [ q1(UyU
T
y − LD), . . . , qNmax−1(UyU

T
y − LD) ], (7)

in which Uy = [ y[1] − d, . . . ,y[L] − d ] ∈ R
M×L, and qi(R)

denotes the unit-norm eigenvector of R associated with the ith prin-
cipal eigenvalue. In practical situations, the multiple regression anal-
ysis based noise covariance estimation method reported in HySiMe
[6] can be used to estimate D. Further, due to (1), (2), and (A2), we
have

ỹ[n] = x̃[n] + w̃[n], n = 1, . . . , L, (8)
where

x̃[n] =

N∑
i=1

si[n]αi, n = 1, ..., L, (9)

in which αi = C
T (ai − d) ∈ R

Nmax−1 is the ith dimension-
reduced endmember, and w̃[n] � C

Tw[n] ∈ R
Nmax−1 is i.i.d.

Gaussian noise with zero mean and covariance matrix Σ given by

Σ = C
T
DC ∈ R

(Nmax−1)×(Nmax−1). (10)

Some convex geometries of the noise-free dimension-reduced
data x̃[n] given by (9) which will lay a solid platform for the ensuing
algorithmic developments, are as follows:

(F1) By (A1)-(A4), any dimension-reduced pixel vectors x̃[n]
should lie in conv{α1, . . . ,αN} and

conv{x̃[1], . . . , x̃[L]} = conv{α1, . . . ,αN}, (11)

where conv{α1, . . . ,αN} is a simplex withN extreme points
being α1, . . . ,αN .

(F2) Considering only (A2) and (A3), any dimension-reduced pixel
vectors x̃[n] should lie in aff{α1, . . . ,αN} and

aff{x̃[1], . . . , x̃[L]} = aff{α1, . . . ,αN}, (12)

where its affine dimension is equal to N − 1.

4. GEOMETRY BASED ESTIMATION OF NUMBER OF
ENDMEMBERS (GENE) ALGORITHMS

In the first subsection, suppose that (A1)− (A4) hold true. Then, the
corresponding noisy pixels are given by

ỹ[li] = αi + w̃[li], ∀i = 1, . . . , N. (13)

We propose the GENE-CH algorithm based on the convex hull ge-
ometry (F1). For data with (A4) violated, the GENE-AH algorithm
is proposed in the subsequent subsection.

4.1. GENE-Convex Hull (GENE-CH) Algorithm

Suppose that a reliable, successive EEA has found the pixel indices
l1, . . . , lN , lN+1, . . . , lk−1, lk, in which l1, . . . , lN are pure pixel in-
dices and k ≤ Nmax. Then by (8),(9), and (13),

ỹ[li] = x̃[li] + w̃[li], i = 1, . . . , k, (14)

where

x̃[li] =

{
αi, i = 1, . . . , N,∑N

j=1 sj [li]αj , i = N + 1, . . . , k.
(15)

As has been depicted in (F1), the total number of extreme points in
conv{x̃[1], . . . , x̃[L]} is N in the absence of noise. That is to say,
if x̃[lk] ∈ conv{x̃[l1], . . . , x̃[lk−1]}, then it can be inferred by (15)
that all the endmembers are already found, i.e., k ≥ N + 1. How-
ever, in a real scenario, since only noisy ỹ[l1], . . . , ỹ[lk] are avail-
able (rather than x̃[l1], . . . , x̃[lk]), we propose a Neyman-Pearson
hypothesis [9] testing based method to determine whether x̃[lk] ∈
conv{x̃[l1], . . . , x̃[lk−1]}, or not, based on noisy ỹ[l1], . . . , ỹ[lk].
The idea is to find the smallest k for which ỹ[lk] is closest to
conv{ỹ[l1], . . . , ỹ[lk−1]} in some optimal sense. To do so, let us
consider the following constrained least squares problem:

θ
� = arg min

θ�0,1T

k−1
θ=1

‖ỹ[lk]−Ak−1θ‖
2
2, (16)

where

Ak−1 = [ỹ[l1], . . . , ỹ[lk−1]] ∈ R
(Nmax−1)×(k−1). (17)

The optimization problem in (16) is convex and can be solved by
using available convex optimization solvers such as SeDuMi [10].
Then, the optimal fitting error vector e is given by

e = ỹ[lk]−Ak−1θ
� (18)

= μk +

(
w̃[lk]−

k−1∑
i=1

θ�i w̃[li]

)
∈ R

Nmax−1, (19)

where the second equality is due to (14), and

μk = x̃[lk]−
k−1∑
i=1

θ�i x̃[li]. (20)

Then the following can be observed from (19):

1234



• If x̃[lk] ∈ conv{x̃[l1], . . . , x̃[lk−1]}, then it implies that
x̃[lk]−

∑k−1
i=1 θ

′

ix̃[li] = 0, for some θ
′

= [θ
′

1, . . . , θ
′

k−1]
T �

0, 1T
k−1θ

′

= 1. In the noise-free case (i.e., ỹ[li] = x̃[li], for

all i), θ� = θ
′

and e = 0, while in the presence of noise
θ� 	 θ

′

, implying that e can be approximated as a random
vector with distribution N (0, ξ�Σ) where Σ has been de-
fined in (10) and

ξ� = 1 + θ�21 + θ�22 + · · ·+ θ�2k−1 (21)

since w̃[n] is i.i.d.

• If x̃[lk] 
∈ conv{x̃[l1], . . . , x̃[lk−1]}, then e ∼ N (μk, ξ
�Σ).

Now let us define

r = e
T (ξ�Σ)−1

e. (22)

When x̃[lk] ∈ conv{x̃[l1], . . . , x̃[lk−1]}, it is easy to see that r can
be approximated as a random variable following central Chi-square
distribution χ2(Z), and otherwise r follows non-central Chi-square
distributionNχ2(Z,μk) [11] where Z = Nmax−1 denotes the de-
grees of freedom. Hence, we consider the following two hypotheses:

H0 (x̃[lk] ∈ conv{x̃[l1], . . . , x̃[lk−1]}) : r ∼ χ2(Z),

H1 (x̃[lk] 
∈ conv{x̃[l1], . . . , x̃[lk−1]}) : r ∼ Nχ2(Z,μk).

Since μk is unknown so is Nχ2(Z,μk), we use Neyman-Pearson
classifier rule for the above hypothesis testing problem:

DecideH0 if r < κ (23a)

DecideH1 if r > κ, (23b)

Denoting the probability density function (pdf) of the central Chi-
square distribution by fχ2(x, Z), we define

ψ(r) �

∫ ∞

r

fχ2(x,Z)dx = 1−
γ(r/2, Z/2)

Γ(Z/2)
, (24)

where γ(x/2, Z/2) is the lower incomplete Gamma function [12].
Then, by Neyman-Pearson lemma [9], the optimal threshold κ for
problem (23) satisfies

ψ(κ) = PFA, (25)

where PFA is the preassigned acceptable false alarm rate. There is no
closed-form expression for the inverse function of ψ(·), and hence
we formulate the decision rule in (23) to

DecideH0 if ψ(r) > PFA, (26a)

DecideH1 if ψ(r) < PFA. (26b)

The integral ψ(r) defined in (24) can be easily computed by using
available packages such as MATLAB. Once ψ(r) is evaluated, one
of the two hypotheses is decided, based on (26). The pseudo-code of
the proposed GENE-CH algorithm is given in Table 1.

4.2. GENE-Affine Hull (GENE-AH) Algorithm

When (A4) is violated, the dimension-reduced endmembers esti-
mated by an EEA can also be expressed as in (14), where

x̃[li] =
N∑

j=1

sj [li]αj , ∀i = 1, . . . , k. (27)

Table 1. Pseudo-codes of GENE-CH and GENE-AH algorithms.

Given noisy hyperspectral data y[n], maximum number of endmembers
N ≤ Nmax ≤ M , false alarm probability PFA, and estimate of
noise covariance matrix D; a chosen successive EEA.

Step 1. Compute (C,d) given by (6) and (7).
Step 2. Obtain the first pixel index l1 by the successive EEA and compute

ỹ[l1] by (5). Set k = 2.
Step 3. Obtain the kth pixel index lk by the successive EEA and compute

ỹ[lk] by (5), and form Ak−1 by (17).
Step 4. Use Sedumi [10] to solve

problem (16) for GENE-CH
problem (28) for GENE-AH

for the optimal θ� and e = ỹ[lk]−Ak−1θ
�.

Step 5. Compute r = eT (ξ�Σ)−1e, where ξ� = 1 + θ�Tθ� and Σ =
C

TDC, and ψ(r) by (24).
Step 6. If ψ(r) > PFA, then output k − 1 as the estimate of N , else

k := k + 1 and if k ≤ Nmax go to Step 3.

For such hyperspectral data, it can be shown that GENE-CH may
result in an overestimation of the number of endmembers. Hence we
next propose the GENE-AH algorithm which does not require the
pure pixel assumption (A4). The GENE-AH algorithm uses the fact
(F2), which states that in the noise-free case, the affine dimension
of aff{x̃[1], . . . , x̃[L]} is N − 1. This implies that in the noise-free
case, if x̃[lk] ∈ aff{x̃[l1], . . . , x̃[lk−1]}, then k ≥ N+1. Here again
we use Neyman-Pearson hypothesis [9] testing to find the smallest
k such that the hypothesis x̃[lk] ∈ aff{x̃[l1], . . . , x̃[lk−1]} is true
with the given PFA, based on noisy ỹ[l1], . . . , ỹ[lk]. As in (16), we
consider solving the following constrained least squares problem:

θ
� = arg min

1
T

k−1
θ=1

‖ỹ[lk]−Ak−1θ‖
2
2, (28)

whereAk−1 has been defined in (17). By defining the optimal fitting
error vector e as in (18), we have the following inferences:

• if x̃[lk] ∈ aff{x̃[l1], . . . , x̃[lk−1]}, then it can be approxi-
mated that e ∼ N (0, ξ�Σ).

• if x̃[lk] 
∈ aff{x̃[l1], . . . , x̃[lk−1]}, then e ∼ N (μk, ξ
�Σ),

where μk, ξ�, and Σ have been defined in (20), (21), and (10),
respectively. Defining the random variable r as in (22), a similar
Neyman-Pearson hypothesis testing procedure can be devised for
GENE-AH to estimate the number of endmembers present in the
data. The procedure for GENE-AH is also summarized in Table 1.

Most existing benchmark algorithms are directly or indirectly
developed based on that the range space of the endmembers is the
same as that of the hyperspectral data, i.e., they are based only on
(A3) (or subspace geometry). However, the GENE algorithms not
only make use of (A3), but also (A2) (or affine geometry) for GENE-
AH algorithm, and (A1) and (A2) (or convex geometry) for GENE-
CH algorithm. The advantages of considering the assumptions (A1)
and (A2) on abundances will be more evident in the simulations.
It should be noted that the performance of both GENE-CH and
GENE-AH algorithms depends on the performance of the succes-
sive EEA used. Hence, the successive EEA algorithm employed by
both GENE-CH and GENE-AH algorithms need to be reproducible
(without any initialization) and can sequentially provide endmem-
ber estimates without repetition. For instance, one successive EEA
recently proposed in [13], called p-norm based pure pixel identifi-
cation (TRI-P) algorithm, not only possesses the above performance
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Table 2. Mean±standard deviation of the estimated number of endmembers for various algorithms over 100 independent runs for various
PFA (whenever applicable), number of endmembers N , and purity levels ρ, as well as SNR=30 dB, Nmax = 25, L = 5000, and M = 224.

Methods PFA

ρ = 1, SNR=30 dB N = 8, SNR=30 dB
Number of Endmembers N Purity Level ρ

8 12 16 20 0.8 0.85 0.9 0.95

GENE-CH (TRI-P, p = 2)
10−4 8.02±0.17 12.04±0.19 15.77±0.46 19.78±0.50 12.82±2.94 10.97±2.38 9.28±1.28 8.33±0.58
10−5 8.00±0 12.03±0.17 15.77±0.46 19.74±0.52 12.13±2.70 10.23±1.92 8.85±0.98 8.17±0.45
10−6 8.00±0 12.02±0.14 15.72±0.47 19.70±0.52 11.65±2.69 9.85±1.71 8.61±0.92 8.11±0.38

GENE-AH (TRI-P, p = 2)
10−4 8.00±0 12.00±0 14.76±0.42 17.75±0.50 8.02±0.14 8.01±0.09 8.00±0 8.01±0.09
10−5 8.00±0 12.00±0 14.57±0.49 17.51±0.54 8.00±0 8.01±0.09 8.00±0 8.00±0
10−6 8.00±0 12.00±0 14.32±0.46 17.17±0.66 8.00±0 8.00±0 8.00±0 8.00±0

HYSIME [6] – 8.00±0 12.00±0 14.00±0 16.15±0.35 8.00±0 8.00±0 8.00±0 8.00±0

HFC [4]
10−4 5.00±0 7.14±0.68 8.66±0.27 4.19±0.63 5.00±0 5.00±0 5.00±0 5.00±0
10−5 5.00±0 6.44±0.53 7.93±0.25 3.67±0.60 5.00±0 5.00±0 5.00±0 5.00±0
10−6 5.00±0 6.10±0.46 7.76±0.47 3.23±0.52 5.00±0 5.00±0 5.00±0 5.00±0

NW-HFC [4]
10−4 5.00±0 7.18±0.70 9.15±0.35 6.23±0.69 5.00±0 5.00±0 5.00±0 5.00±0
10−5 5.00±0 6.46±0.62 8.97±0.30 5.46±0.77 5.00±0 5.00±0 5.00±0 5.00±0
10−6 5.00±0 5.96±0.58 8.80±0.42 4.78±0.70 5.00±0 5.00±0 5.00±0 5.00±0

merits, but also is reliable with theoretical support for endmember
identifiability for the noise-free case. Therefore, TRI-P algorithm is
a good EEA candidate for the proposed GENE algorithms.

5. SIMULATIONS AND CONCLUSION

One hundred Monte-Carlo runs are performed to study the effec-
tiveness of the proposed GENE-CH and GENE-AH algorithms that
employ TRI-P with p=2 (i.e., 2-norm) [13] to acquire endmember es-
timates for various scenarios. Algorithms considered for comparison
are HySiMe [6], HFC [4], and NW-HFC [4]. The GENE algorithms,
HFC, and NW-HFC are evaluated under the following false alarm
probabilities: 10−4, 10−5 and 10−6, and for GENE and NW-HFC
algorithms, the true noise covariance matrix is supplied for each sim-
ulated realization. The endmembers are chosen from the USGS li-
brary [14] with M = 224. The maximum bound of the number of
endmembers used in GENE algorithms is Nmax = 25. The abun-
dance vectors s[n], n = 1, . . . , L are generated by following the
Dirichlet distribution [8] for generating synthetic data with different
purity levels ρ (defined as ρ = max{‖s[n]‖2 , n = 1, . . . , L} [8]).

Table 2 displays mean±standard deviation of the number of end-
members estimated by the algorithms under test for two scenarios,
where all the hyperspectral data with L = 5000 are corrupted by
white Gaussian noise [8] with SNR = 30 dB. The estimated number
of endmembers closest to the true number of endmembers are high-
lighted by bold-faced numbers. In the first scenario, the number of
endmemberN is allowed to vary as 8, 12, 16 and 20, while maintain-
ing the purity level ρ = 1 (indicating the existence of pure pixels in
the data). It can be observed that for higher number of endmembers
N = 16, 20 GENE-CH yields the best performance followed by
GENE-AH. For N = 8, 12 both GENE-AH and HySiMe yield best
performance. In the second scenario where the purity level ρ of the
hyperspectral data varies from 0.8 to 0.95 (indicating no pure pixels
in the data) while maintaining N = 8, it can be readily seen that
when purity level is smaller, GENE-CH overestimates the number
of endmembers. On the other hand, GENE-AH with PFA = 10−6

and HySiMe correctly estimate the number of endmembers.
In conclusion, we have presented two convex geometry based al-

gorithms for estimating the number of endmembers, namely GENE-
CH and GENE-AH algorithms, based on (F1) and (F2), respectively.
The GENE algorithms employ a Neyman-Pearson hypothesis testing
strategy and they must operate in conjunction with a successive EEA
in a synchronization fashion. Simulation results confirm the superior

efficacy of the proposed GENE-CH and GENE-AH algorithms over
some existing benchmark methods, because of more focused geom-
etry (convex and affine sets rather than range space) considered for
the hyperspectral data.
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